

ED 243 471

AUTHOR
TITLE

INSTITUTION

REPORT NO
PUB DATE
NOTE
AVAILABLE FROM

PUB TYPE

EDRS PRICE
DESCRIPTORS

DOCUMENT RESUME

IR 0.11 096

Martin, Roger J.; Osborne, Wilma M. Et-

Guidance on ,Software Maintenance. Final Report.
Reports on Computer Science and Technology.
National Bureau of Standards (DOC), Washington, D.C.
Inst. for Computer Sciences and Technology.
NBS-SP-500-106 ,

Dec 83
78p.
Superintendent of Documents, U.S. Government Printing
Office, Washington, D.C. 20402.
Guides Non-Classroom Use (055)

MF01/PC04 Plus Postage.
*Administrative Problems; *Change Strategies;
*Computer Software; Decision Making; Guidelines;
Information' Systems; Policy Formation; Program
Administration; *Program Improvement; *Programiiig

IDENTIFIERS *Management Control;-*Software Maintenance

ABSTRACT
Based on informal discussions with personnel at

selected federal agencies and private sector-organizationsand on
additional research, this publication addressei issues and problems
of software, maintenance and suggests actions and procedures which can
help software maintenance organizations meet the,groWing demands of
maintaining existing systems. 'Software maintenance is defined as the
performance of perfective;. adaptive, and corrective maintenance
activities required to keep a software system operational and
responsive after it is accepted and placed into production. The
software maintenance process'and the qualities of an ideal maintainer
are briefly outlined. Also discussed are factors to be weighed when
deciding on system maintenance or redesign, control of software
changes, and the improvement of software maintenance as a.result of
the policies, standards, procedures, and techniques instituted and
enforced by management. Software maintenance tools, or Computer
programs thitxan be,useful in maintaining other computer programs
and their documentation, are described. In a final section on
management, emphasis is placed on the need for strong, effective/
technical management control-of the software maintenance process. An
80-item biblioaraphy and examples of software maintenance definitions
found in othei publications are provided. (Author/ESR)

Reproductions supplied by EDRS are the best that can be made

from the original document.
**

U.S. Department
of Commerce.

National Bureau
of Standards

Computer Science
and Technology

NBSSpecial publication 500-106

Guidance on
'Software

Maintenance

O

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER IERICI

is document has been reproduced as
...itceived from the person or organization

originating It
Minor changes have been made to improve
reproduction quality.

Points of view or optnioh:i stated in this docu-
ment do not necessarily represent official NIE
position or policy.

R.

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established.by.an act of Congress on March 3, 1901.
The Bureau's overall goal is to strengthen and advance the Nation's science and technology
and facilitate their effective application for public benefit. To this.end, the Bureau conducts
research and provides: (I) a basis for the Nation's physictl measurement system, (2) scientific
and technological services for industry and government, (3) a technical basis for equity in
trade, and (4) technical services to promote public safety. The Bureau's technical work is per-
formed by the National Measurement. Laboratory, the National Engineering Laboratory, and
the Institute for Computer Sciences and Technology.

pliK NATIONAL. MEASUREMENT LABORATORY provides the national system of
134Siccil and chemical and materials measurement; coordinates the system with measurement
.syst5ins of other nations, and furnishes essential services leading to accurate and uniform ,
phti*.cal and chemical measurement thrOughout the Nation's±scientitic community, industry,
and commerce; conducts materials research leading to improved methods of measurement,

. standards, and data on the properties of materials needed by industry, commerce, educational
institutions, anil,,Government; provides advisory and research services to other Government
agencies; ttevaops, produces, and distributes Standard Reference Materials; and provides
calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities'- Radiation Research Chemical Physics
Analytical Chemistry Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-
vices to the public and private sectors to address national needs and to solve national
problems; conducts research in engineering and applied science in support of these efforts;
builds and maintains competence in the necessary disciplines required to carry out this
research and technical service; develops engineering data and measurement capabilities;
provides engineering measurement traceability services:develops test methods and, proposes
engineering standards and code changes; develops and proposes new engineering practices;
and develops and improves mechanisms to transfer results of its research to the ultimate user.
The Laboratory consists of the following .centers:

Applied Mathematics Electrbnics and Electrical Engineering2 Manufacturing
Fnginoering Building TechnOlogy Fire Research Chemical Engineering2

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts
research and provides scientific ana technical services to aid Federal agencies in the selection,
acquisition, application, and use of computer technology to improve effectiveness and
economy in Government operations in accordance with Public Law 89-306.(40 U.S.C. 759),
relevant Executive Orders, and other directives; carries out this mission by managing the.
Federal Information Processing Standards Program, developing Federal 'ADP standards
guidelines; and managing Federal participation. in ADP voluntary standardization activities;
provides scientific and technological advisory services and assistance to Federal agencies; and

`provides the technical foundation!for computer- related policies of the Federal Government.
The Institute consists of the fol wing centers:

Programming Science and ec nology Computer Systems; Engineering.

'Headquarters and Lab ratorieS at G ithersbtirg, M p, unless otherwise noted;
mailing address Washi gton, DC 2 23;1. '
'Some divisions within the center ar located at Boulder, CO 80303.

Ott

Computer Science'
and Technology

NBS SpeciN Publication 500-106
0,

Guidance on
Software Maintenance

Roger J. Martin and Wilma M. Osborne

Center fOr Programming Science and Technology
InsktUte for Computer Sciences and. Technology
National Bureau of Standards
WaShington, DC 20234

, .

.U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernesr,Ambler, Director

Issued December 1983

Reports on Computer

7

nce and Technology

The National Bureau of Standards NTS cial responsibility within the Federal
Governrhent.for computer science and technology activities. The programs of the
NBS Institute for Comput& Sciences and Technology are designed to provide ADP
standards, guidelines, and ;technical adyisory services to improve the effectiveness
of computer utilization in the Federatector, and to perform appropriate research

. and development efforts ,as fbundation for such .activities and programs. This

m publication series will report these NBS efforts to the Federal computer community as
well as to interested- specialists in the academic and private sectors. Those wishing
to receive notices of pul4ications in this,series should complete and returQthe form
at the end of this publication.

National Bureau of Standards-Special Publication 500-106'
Natl. Bur. Stand. (U.S.), Spec. POI. 500-106, 74 pages (Dec. 1983)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 83-600611

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1983

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402
Price

(Add 25 percent for other than U.S. mailing)

1 .
4 :.

TAB E OF CONTENTS
:

4

1.0' BACKGRbUND *
.

11, !.-

0,.) ..,.1.1 Introduction.- .' C. 0000 o r er,r ..x.,.. 2"
, . v ' .,*t

.."'-2.0 DEFIINITION q SOFTARE MAINTENANCE .,,
6-

:.

.

2.1 Functional Definition
,k

1.,,,.....

,.

,.. 6

2.1.1 Perfective maintenance ,
.,.. 7

2.1.2 Adaptive maintenance., 8
2.1.3. Corrective maintenance 9-

3.0 THE SOFTWARE MAINTENANCE PROCESS 10

4.0 SOFT14.A4rE MAINTENANCE PROBLEMS 4.... 12

t.1. Software,,Quality 12

4.1.1 Poor software design \ 12
'44;'.1.2 Poorly coded software 13
A.1.3 Software designed for outdated hardware 13

_.

4.1.4 Lack of common data definitions 14
JA 4.1,5' More than one progeamming language used 14

4.1.6 Increasing inventory 14
4..1.7 Excessive resource r.eq.u'irements 14

4.2 Documentation lt .,.... 15

4.3 Users 16

Pe'rsonnel 16

5.0 THE IDEAL MAINTAINER 18

6.0' SYSTEM MAINII1NANCE'VS SYSTEM REDESIGN 20

6.1 Frequent SystemFailure's 21

6.2 Code Ove'r SeVen Years Old 21

6.3 'Overly Complex Program Structure And Logic Flow 22

6.4 Code'Written For Previous Generation Hardware
'?

6.5 Running In Emulation Mode 23

6.6, Very Lange Modules Or Unit Subroutines 23

Page

Excessive Resource Requirements
s`

23

6.8 Hard Coded Pardmeters Which Are SUbject To Change 24

6.9 DifficUlty In Keeping Maintainers 24

6.10 Seriously Deficient Documentation 24

e
6.11 Missing Or Incomplete'Design Specifications /25

7.0 CONTROLLING SOFTWARE CHANGES 6

7.1 Controlling Perfecti\!e Maintenance 27

7.2 Controlling Adaptive Maintenance 28

7.3. Controlling Corrective Maintenance 30

8.0 IMPROVING SOFTWARE MAINTENANCE 31 .

8.1 Source Code Guidelines 32

8.1.1 Use a single high-order language 32

8.1.2 Coding conventions 32

8.1.3 Struct e , modular software 34

8.1.4 Sta and data definitions 35

-, 8.1.5 Well-commented code '35

8.1.6 Avoid compiler extensions .36

8.2 Documentation Guidelines 36

8.3 Coding And Review Techniques 3,8

8.3.1 Top down/bottbm up approach .. 38

8.3.2 Peer reviews 39

8.3.3 Walkthroughs 39

8.3.4 Chief programmer team 40

8.4 Change Control 41

8.4.1 Change request ,41.

8.4.2 Code audit 42

8.4.3 Review and approval 42

8.5 Testing Standards And Procedures 43

9.0 SOFTWARE MAINTENANCE TOOLS 44

9,1 Cross Referencer 45

9.2 3CoMparatorS

9.3 -Diagnostic-Routines 45

9.4 Application; Utility libraries 4
95, On-line Documentation Libraries 47

9.6 On- line /Interactive, Change And Debug-Facilities 47

9:7 Generation And Retention Of TestkData 48

10.0 MANAGING' SOFTWARE.,MAINTENANCE \. '49

10.1 Goals Of Software Maintenance Management 50

10.2 Establish A Software Maintenance. Policy 51

10.2.1 Review and evalujte,all requests for changes 53-
10.2.2 Plan for, and schedule maintenance 54
10.2.3 Restrict code changes to the approved work.,., 54
10.2.4 'Enforce coding and 'documentation standards 54

10:3'Staffingjind Management Of Maintenance Personnel 55.

11.0 SUMMARY 58

BIBLIOGRAPHY o 59

'APPENDIX I : Software Maintenance Definitions 65

V

LIST OF TABLES
1

'Page

Table 1 Software Maintenance Problems 4

Tahle,2 Functional Definition of Software Maintenance.., 7

Table 3. - Software Maintenance Process 10

Mble 4 Characteristics of Systems Which Are
Candidates for Redesign 20

Table 5. Suggested Policies for Controlling
Software Changes 26

, Table 6 - Factors Which Affect Source Code.
Maintainability , 31

Table 7 - Documentation Guidance 0 \\-36

Table 8 - Coding and Review Techniques.. 38

/

° Table 9 -. Controlling Changes 41

Table 1'0 - Software 'Maintenance Tools 44

Table 11 - Goals of Software. Maintenance 51

Table 1 - Establishing a Software' Maintenance Policy 53

Table 3 - Managing the Software Maintenance Function 57

vi

GO,

7 .

Vj
ea

Guidance On Software Maintenance

Roger J. Martin and Wilma M. Osborne

This report addresses issues and problems'of soft4hre
maintenance and suggests actions and procedures which
can help software maintenance organizations meet the
growing' demands of maintaining existing systems. The
report establishes a wofking definition for software
maintenance and presents an overview of current
problems and issues in that area. Tools and
techniques that may be used to improve the control of
software maintenance activities and the,' productivity
of a software maintenance organization are discussed.%
Emphasis is placed on the need for strong,: .effective
technical management control of the software
maintenance process..

o

s
:.:...

Key words: adaptive maintenance; corrective
maintenance; management; perfective maintenance;
software engineering; software maintenance; software
maintenance management; .software maintenance tools.

.,21

`,

2,

O

1

1.0 BACKGROUND

The Institute for Computer Sciences and Technology (ICST),

within the National Bureau' of Standards (NBS), has a

responsibility under Public Law 89-306 (Brooks Act) to

promote cost effective selection, acquisition, and
utilization of automatic data processing resources within the
Federal Government. ICST efforts include research in

computer science and technology, direct technical assistance,
and the development of standards and guidelines for data
processing equipment, practices, and software. As part of

this responsibility and the growing need to improve software
maintenance methods and management, the ICST is- developing
software maintenance guidance designed to assist Federal
agencies in the ongoing support of existing computer s4,sstems.
While software systems vary in function, type, and size, many
of the functions performed under software maintenance are
universal In scope and the activities required to keep them
operational are generally the same. This is the first in a

series of reports which address both the management and
technical practices, procedures, and -methods for software
maintenance.

This report provides general guidance for managing software

maintenance efforts. -It presents an overview of the various
aspects and problems of software maintenance, and identifies
those techniques and procedures designed to assist management
in controlling and performing software maintenance. It

addresses the need for a maintenance policy with enforceable
controls for use throughout the software life cycle. The
undierlying theme is that improvements in the area of software
maintenance,will come primarily as a result of the software
maintenancepolicies, standards, procedures, and techniques
instituted and enforced by management.

1.1 Introduction

There is a growing interest, in 'software maintenance as

evidenced by the number'of articles, reports, and textbooks
on the subject (ee Bibliography). This' interest has been

spurred by estimates that more resources are required to
maintain existing systems than to developnew ones. Federal

managers respo sible for software application systems
estimate that % to 70% of the total application .software
resources are spent on software maintenance [GA081a] [GA080:

Two of the major causes bf this software maintenance burden

are the growth of the inventory of softwarelhich must be
maintained and the failure to adopt and utilize improved

technical and management methods and tools. The issue which

- 2

.

must be addressed is. not one of reducing the absolute'cost of
software maintenance, but rather improving the quality. and

/ effectiveness of software'maintenance and thus, reducing the
eelative or incremental costs. .

In order to improve the .quality and effectiveness, it is,-
necessary to not only improve software maintenance
techniques, methodologies, and tools, 'but to also-improve the
management of software maintenance. This Gbide discusseS.-the
problems associated, with managing software -maintenance and

-software maintainers, and examines management methods which
can reduce those problems.

Informal discUssiOns were held with selected Federal age,ncies
and . private sector organizations to gain a better
understanding of the current state of -software Maintenance.
These ',discussions provided background inrormation on 'current
practices; procedures, and policies relating to software
maintenance.' This information, along with additional
research, is the basis for this report. 4

The major topie, areasaddresstO in theee discussions were:

1. Definition of software maintenance.

2. Methods,and techniques in coordinating and
performing sciftw4re maintenance.

3.' Major maintenance problems.

4. Types of appl\ications being maintained.

5. Developmental ,history of existing software.

Maintenailq staff profiles.

7. Management of maintenance activities.

8. Utilization of maintenance tools.

It was expected that there would be some cbmmonality in the
information provided by these discussions. In fact, while
:each organization has problems peculiar oto its environment,
there was an extremely high 'degree of consistency. in the
comments made and the problems cited. .)

The primary difficulties and deficiencies encountered in
software maintenance fall into several categories: software
quality, environment,; management, usets, and personnel.
Specific problems which were consistently. Mentioned, are
listed'in Table 1.

- 3 ,-

1

Table 1 Software Maintenance Problems

Software

Environment

Management

Users

Personnel

7! program quality
software design
software coding

- software documentation
- programming languages used

- lack of common data definitions
- increasing inventory
- excessive resource requirements

- growth
- evolving /change
- new hardware

- maintenance controls,
maintenance techniques and procedures
maintenance tool usage
standards enforceme"nt

demanding more capabilities

- lack of experience
- image/morale problems
- view of maintenance:,

unchallenging, unrewarding

As can bc;seen from the table, there a're both technical and
management - problems. It appears, however, that many of the
:technical problems 'are often the result of inadequate
management control over the software maintenance process.
These problems arise fdr at least two different reasons.
First of all, there is a great deal of code which was not
developed with main.tenance'in mind. Indeed, the emphasis has
often . been ,to get the,program up and running without being
"hinde'redi! by guidelines, methodologies, or other controls.
The- second reasons, ,that over the life ,cycle of a software
System,:the code'Apd logic which may have been well-designed '

and implemented :Often deteriorate due to an endless
:3uccef.,tornoP "qu'idk fixes ". and .patChes which are neither
well-der4gned nor well- documented. Thus, in today's vast
inventory of applation systems, there, are many programs

'the tim.e of heir, development were considered
"sta-te7Of 7the-art," but today are, in fact, virtually
unmakntainable...

13

The need to maintain old, outdated, poorly documented -systems_,
'was consistently cited as a -primary problem in software
maintenance. -There appears_to have been some improvement in'

the quality of software over the last four to five years.
These improvements, however, have come maioly. on an
individual ba-sis where a prbgrammer, analyst, or line manager
has introduced dne or more modern programming practices (e.g.
structured code, top-down design and development, peer
review). There usually has not been a systematic adoption of
these practices at a higher level within an agency. Nor has
there been extensive institutional introduction of standards
and guidelines for software development and maintenance.

Sections 1.0 through 6.0 address the definitions and problems
-of software maintenance. These sections present an overview
of the software maintenance process and discus's the primary
technical and management software maintenance issues.
Sections 7.0 through 10.0 address how to control and improve
software maintenance through the adoption or use of various
policies, techniques, and tools.

5

14

2.0 DEFINITION OF SOFTWARE MAINTENANCE

Software maintenance is a commonly "understood" term for

which there id no single definition. This lack of a standard
definition often results in confusion for those attempting to

address the problems of software maintenance. Some examples
of software maintenance, definitions are included in Appendix
I. The following definition of software maintenance is used
throughout this report.

Software maintenance ia the performance of those
activities required Q. keep a. software' system
operational and responsive after it ia accepted and
Placed into production.

Software maintenance then, is the set of activities which

result in changes to the originally accepted (baseline)
product set. These changes consist of modifications created

by correcting, inserting, deleting, extending, and enhancing
the baseline system. Generally, these changes are made in

order to keep the system functioning in an evolving,
expanding user and operational environment.

2.1 Functional Definition

Functionally, software maintenance activities can be divided

into three categories which were originally proposed by

Swanson[SWAN76]: perfective, daptive, and corrective.

Many software managers consider requirements specification
changes and the addition of new capabilities to be software

maintenance. Alttiough these areas were not addressed by

Swanson, the definition of perfective maintenance has been
expanded to include them. The three maintenance categories
are defined in the following manner:

Perfective maintenance' includes all changes, insertions,

deletions, modifications, extensions, and enhancements which
are made to a system to meet the evolving and/or expanding
needs of the user.

Adaptive maintenance consists of any effort which is

initiated as a result of changes in the environment in which
"a software system must operate.

Corrgctive maintenance refers to changes necessitated by

actual errors (induced or residual "bugs") in a system.

6 15

Table 2 - Functional Definition of
Software Maintenance

Perfective : changes, insertions,
deletions,modifications,
extensions, and
enhancements

Adaptive :'adapting the system
to changes in the
environment

Corrective : fixing errors ,

2.1.1 Perfective, maintenance

Perfective maintenance refers to enhancements made to improve
software performance, maintainability, or understandability./
It is generally performed as a result, of new or changing.
requirements, or in an attempt to augment or fine tune the
software. Activities designed to make the' code easier to.

understand and to work with, such as restructuring or
doCumentation updates (often referred to as "preventive"
maintenance) are considered to be perfective. Optimization
of code to make it run faster or use storage more efficiently
is also included in the perfective ,category. Estimates
indicate that 'perfective maintenance comprises approximately
60%-70% of all -software maintenance efforts.

Perfective maintenance is required as a result of both the
failures and successes of the original system. If the system
works well,- the user will want additional features and
capabilities. If the system works poorly, it must be fixed.
As requirements change and the user becomes more
sophisticated, 'there will be changes 'requested to make'

functions ,easier and/or clearer to use. Perfective
maintenance is the method usually employed to keep the system
"up-to-date", responsive and germane to the, mission of the
organization.

There is some disagreement whether the addition of new
capabilities should be considered maintenance or additional
development. Since it is.an expansion of the existing system
fter it has been placed into operation, and is usually
performed by the same staff responsible for other _forms of

maintenance, it is appropriately classified as maintenance.

Fine tuning existing systems to eliminate shortcomings and

inefficiencies and' to optimize the prOcess is often'referred'
to as upTeventivvmintenance". It can have dramatic effects
on old, 'poorly written systems -both in terms of reducing
resource 'requirements, and in making the' system more
maintainable' and thus, ,easier to. change or enhance.
Preventive maintenance may also include the study and .,

examination of ;a system -prior to-occurrence of errors or
problems. Fine- tuning is an excellent vehicle for

introducing the programmer to th4 code, while at the same
time -reducing the likelihood of serious errors in the future.

2.1.2 Adaptive maintenance

Adaptive maintenance refers to modif'ica'tions made to a system

to satisfy or accomodate changes 'in the. processing
environment. These environmental changes are normally beyond

the control' of the software maintainer and consist primarily
of changes to the:

- rules, laws, and regulations that affect the system
- hardware configurations, e.g., new terminals, local

printers
- data formats, file structures

system software, e.g.,.operating systems, compilers,
utilities.

Changes to rules, laws. -and regulatiqns 'often require- the
performance of adaptive maintenance on a system. These
changes must often be completed in a very short time frame in

order to meet the dates, established by the laws and

regulations. If rules and their actions are implemented
modularly, the changes are relatively easy to install.
Otherwise, they can be a nightmare.

Changes to the computer hardware (new terminals, local

printers, etc.) which support the, application system are
usually performed to take advantage of new and/or improved

features which will benefit the user. They are normally
performed on a scheduled basis. The 'usual goal of this

maintenance is to improve the operation and response of the
application system.

Changes to data formats and file, structures may require

extensive maintenance on a system if it was not properly
designed and implemented. If reading or writing of data is

isolated in specific modules, changes may have less impact.
If it is embedded throughout the bode, the effort can become

very lengthy and costly.

8
7

'Changes to operating system software (comgilers, .utilities,
etc.) can have varying effects on the existing application
systems. These effects can range from requiring little or no
rep'rog'ramming, to simply recompiling all. f the source code,
to rewriting code which contains non-supported features of a
language that are no longen available under the new software.

Maintenance resulting from changes in the requirements
specifications by the user, however, is consi4red to be
perfective, not adaptive, paintenance.

2.1.3 Corrective maintenance

Corrective maintenance consists of activities -normally k.

considered to be error correction required to keep the, system
operational. By its nature, corrective maintenance is
usually a reactive process where an error must be fixed'
immediately. Not all corrective maintenance is performed in
this immediate response mode; but all corrective maintenance
is related to the system not performing as originally,
intended.

There, are three main causes which require systems to undergo
corrective maintenance:

1. Design errors
2. Logic errors
3. Coding errors

Design errors are generally the 'result of incomplete or
faialty design. When a user glves incorrect, incomplete, or
unclear descriptions of the s'ytetem being requested, or when
the analyst/designer does not fully understand what the user
is requesting, the resulting system will often contain design
errors.

Logic errors are the result of valid tests and conclusions,
faulty logic flow, incorrec implementation of the design
specifications, etc. Logic errors are .usually 'attributable
to the designer- or previous maintainer. Often, the logic
error occurs when unique or unusual combinations of data,
which were not tested during the development or previous
maintenance phases, are encountered.'

S Coding errors are the result of either incorrect
implementation of the detailed logic design, or the incorrect
use of the source code. These errors, are caused by the
programmer. They are usually errors of negligence or
careletsness and are the most inexcusable, but usually the
easiest to fix.

9

1

3.0 THE SOFTWARE MAINTENANCE PROCESS'

The life cycle of computer:software covers'its existence from
its qonception until the time it is no longer available for
se. There are a number of definitions of. the software life
cycle which differ primarily in the categorization of

activities or phases. One traditional definition is:

requireMgaU, design, impleMenttiOn, testing, 'and operation
and maintenanqg'.

The requirements phase encompasSes problem definition and

analysis, statement of project objectives, preliminary system:-
analysis, functional specification,' and design constraints.
The design phase includes the generation, of software
componOlt definition, data definition, and interfaces which
are then verified against the requirements. The
implementation ohasg entails program code generation, unit
tests, and docuMentation.' During the test phase,'system
integration of software components and system acoeptance
tests.are 'performed against the requirements. The ,00erationt
and maintenandg phase covers the use and maintenance of the

system. The beginning,of the maintenance phase of the life
cycle is usually at the delivery and user acceptance of the

software product Set.

Table 3 - Sortware,Maintenance Process

1. Determination of need for change
2. Submission of change request
3. Requirements analysis
4. Approval/rejection of change request
5. Scheduling of task
6. Design analysis
7. Design review
8. Code changes and debugging
9. Review of proposed code changes

10. Testing
11. Update documentation
12. Standards audit
13. User acceptance
14. Post installation review of changes and

their impact on the system
15. Completion of task

The process of implementing a change to' a production system
is complex and involves 'many people in addition to the
maintainer. Table 3 outlines the software maintenance
process. This -process 'begins when the need for a change'
arises and ends after the user has accepted the modified
system and all documentation has been satisfactorily- updated..

Although the process is,presented in a linear fashion, there
are a number of steps where iterative loops often occur. The
change requeSt may be returned to the user for 'additional
clarification; the results of. the design review may
necessitate additional design analysis or even modification

-of the change request; testing may result in additional-
"design changes or recoding; the standards audit may 'require
changes to the design documents, ;:upde, and/or documentation;
and the failure of the users to accept the system may result
in return to a previou8 step or the-cancellation of the task.

One way of describing the activities-of software maintenance
is to identify them' as successive iterations of the first
four phases of the software life cycle, i.e. requirements',
.design, imolementation, and testing. Software maintenance
involves many'oe-the saw/ activities associated with software
development with unique characteristics of its own, some of
which are discussed in the following paragraphs.

Maintenance activities are perforthed within the context of an
existing framework or system. The maintainer must make,

. changes within the existing design and code structure
'constraints. This is often the most challenging problem for
maintenance personnel. The older the system, the more
challenging and time- consuming .,,the maintenance. effort
becomes.

A software maintenance effort is typically performed within a
much shorter time frame than a development ,,effort, A
software development. effort may span one, two, oe more years
while corrective maintenance may be required within hours and
perfective maintenance in cycles of one to six months.

Development efforts must create all of the test data from
scratch." Maintenance efforts typically take advantage of
existing test data and perform regression tests. The major
challenge for the maintainer is to create new data to,
adequately test the changes to't'he system and their impgct on
the rest of the system.

2

.4.0 SOFTWARE MAINTENANCE PROBLEMS

The responses to the ICST survey of selected Federal and

private sector ADP organizations consistently cited a common

set of software maintenance problems. Generally, these

problems can be categorized as technial and management.
Most of these problems, however, can be traced to inadequate
management control of the software-maintenance process.' This
section presents an overview of the technical aspects of the

_{maintenance problems identified in the survey. Management
control issues are addressed in subsequent sections of this

report.. -

4.1 SoftWare Quality

Modern programming prac'.!ices, wh h util e well-defined,

well-structured methodology in the design nd'implementation
of a software system, address at least one major software

maintenance problem - poor program quality. The importance
of these, methodologies, whether they are - formal or informal

is to give 'structure and discipline to. the process of

developing and maintaining software systems. While this may

alleviate some of the software maintenance problems for

systems developed using these methodologies, it does not

solve' the problem of existing systems which were designed,
developed, and maintained without utilizing a disciplined

structure.

A lack of attention to software quality during the design and

development phases generally leads to excessive software

maintenance costs. It should be clearly, understood during

the design and development phases that the maintainability of
the system is directly affected by the quality* of the,

software.,

4.1.1 Poor software design

The design specifications of a software system are vital to

its correct development and imetementation. ,Poor software

design can be attributed to:

- a lack of understanding by the designer of what the user .

requested.'
- poor interpretationof.the deSign specifications by the

developers.
- the use of convoluted and complex logic to meet,a

requirement.
L disjointed segments which do not fit together into a

nicely integrated whole.
- a lack of discipline in"design which results in

inconsistent logic.
- large, unmodular systems (or worse yet one large system

- 12 - 2j

with no component segments) which are bulky, unwieldy,
and very difficult to understand.

_4.1.2 Poorly coded software

A great deal of existing software contains poorly written
code. As computer programming evolved, much of the code
development was performed in an undisciplined, -unstructifred

'manner. This resulted in a great deal of software which does
not effectively utilize bte programming language in which it
is coded. Poor programmNg practices exhibited by this lack
of discipline include:

- unmeaningful variable and procedure names
- few or no comments
- no formatting of the source code
- overuse of logical transfers to other parts of the

program
- use of non-standard language features of the compiler
- very large, poorly structured programs.

The task of understanding poorly written code becomes even
more arduous for the maintainer when the program has been
modified by different individuals and there is.a multiplicity
of programming styles. Often, such code simply does not do
4hat it was intended to do. Eveh if this code produces
expected results; it is sometimes harder to use than
anticipated; is not suited for the skill level available, to
use it; or is slow and unresponsive. Attempting to change
such code without the aid of up-to-date specifications or
other documeritation is often a time-consuming effort.

4.1.3 Software designed for outdated hardware

There are many problems. associated with maintaining software
which was designed to run on previous generation, outdated
-hardware. Oftentimes, the investment in the software is such
that it cannot be discarded or rewritten and must-be kept
functioning as efficiently as possible. The first difficulty
is in finding maintainers yho are ready, able and willing to
maintait these systems. Few 'good' prpgrammers will be
willing to work, on hardware which is unique and for which the
acquired skills are not relevant to 'other potential work.
The career advancement'opportunities frotAkorking on such a
system are minimal to non-existent. Additionally, most
systems of this type are very difficult to maintain.

- 13 - 22

4.1.4 Lack of Common data definitions

An application system (whether it is large or. small) should

have common data definitions (variable-names, _data types,
data structures, etc.) for all segments of the system. These

common definitions entail the establishment of global
variable names which are used-_to refer to the same data

values throughout the system. In addition, the structure of
any data array or record should be defined and used for all_

programs in, the system. Problems invariably arise When two
or more, pragrammers cindependently create data names and
structures which conflict or do not logically associate with

one another.

4.1.5 More than one programming language used

The use of more than one programming language in an-

application. system (for example, assembly language
subroutines to perform' specific processes in a Cobol program)
is often the cause of many software maintenance problems. If

the maintainer is not proficient in the use of each oft the

specific languages, the quality and consistency of the

- maintenance can be affected. Changes to any of the

languages, or corresponding compilers, may also necessitate
changes to the' application system.

4.1.6 Increasing inventory

Rapidly changing technology and its impact on the practices,

procedures, and requir&nents in many organizations, has

resultd in a subs,tantial growth in the number of new

application systems. In addition, the average life

expettancy'of a software system has increased from abbut

three years, -a decade ago, to seven-to-eight years today

[GREE817.

4.1.7 Excessive resource requirements

While some types of maintenance (especially enhancements) may
legitimately result in increased resource ,requirements, other
maintenance often results in needless increases. This occurs

primarily because of the maintainer's inability to correctly
and quickly determine the optimum solution for the required

change. The changes are accomplished by making a "patch" to
the source code (or worse, to the object code) which does not

fit well and is not carefully integrated into the system.

Subsequent maintenance effots may compound this problem

until the resource ?requirements became excessive.
4

- 14 - 23

4.2 Documentation'

One of the major. probiem8 in software maintenance can be
summarized in the single phrase - " a failure to
communicate." The maintainer.whoJreceives the assignment to
perform -maintenance on the must f iFst understand what
the program is doing, how it is doing it, and why. This job
is greatly simplified if the original requester, the
designer, the developer, and the previous maintainers have
communicated all the pertinent informatioh about the system.
This communication should include design specifications, code
comments, programmer notebooks, and other documentation.

Tbo often,._tne. maintainer receiNes.little, no, conflicting,
or incorrect oimmunicatiOn. -fromthose who have previously
handled the system. There is often inadequate documentation';
no detailed record of the original request and subsequent
updates; no explanation of existing code and changes which
have been made to the code; a weak understanding of new user
requests; *and no explanation concerning why seemingly
complex or convoluted logic and coding structure were
selected over a more simple implementation.

Thus, the problems of software maintenance begin simply with
a breakdown in communication between .thOse involved with
ensuring that the system does what is supposed to do.
This communication is hamperedyby. the inability of those
invslved to speakthe same 'language (jargon), the inability,

e lito the basic requirements (users not understanding
computinz; programmers not understanding user requirements),
and most im'ortantly the time, 'frame in which the actions
occur. ' There may be months or years between. the original
development of a. system and each subsequent maintenance
activity.. When a problem occurs, none of the individuals
involved with the original design, implementatibn, and

maintenanceaintenance may be available. The only source of
information available may be the documentatio4t and the code.
Thus, good docl'entation is the only means for good.
communication: The more, complete, clear, and concise this
communication is, the greater the chande that maintenance can
be per prmed in a timely, efficient, and.accurate manner.

- 15 -

4.3 Users

4 1 Users are often unable to concisely specify, what they want

from an application syStem. The initial requirements
definition and design often lack, the d &tailed specificity

would enable the developer to create a system which
accurately performs all of the functions the user needs.

Thus, ah incomplete system is placed into production. The

maintainer must enhance the system using the initial,

inadequate specifications and the new, sometimes vague;
sOfnetimes conflicting, often incomplete, change requests from
the user.

If a system is well-designed,
well-implemented, and, does what the-user needs, the user will
often think of things to add. The old adage that "nothing
succeeds like success" holds true for software development
and maintenance. The.more successful a system'is, the more
additional features the user will think of. If the system
works well, the user will be constantly, demanding more
features. If it does not work well, there will be a constant
demand for retIiedial action to make it function properly.

Therefore, is essential' that management establish and
enforbe controls to ensure that the change requests are both
justified and do not interfere with the maintenance workload.

User requests for changes and enhancements which ,a e

excessive, confliCting, or vague have a major impact on the
maintenance of an application system. Much of the difficul .),

in this area stems from the fact that the.user is often
unaware of the impact that one change can have on both the

system and the maintenance "workload. The number of user
requests for a specific system is usually directly
proportional to the success of the original system and the
previous maintenance efforts. A careful and thorough
management. review of user change requests is essential for
controlling the level of software maintenance and ensuring
adequate feedback to the user on the cost and consequences of
each request.

'4.4 Personnel

A common and widespread,complaint by maintenance personnel is

that software, maintenance is considered to .be unimportant,
unchallenging, unrewarding, uncreative work which is not

apPreciated. by the user or by the rest of the ADP

organization. SoftWare maintenance requires the efforts of
expe'rienced, well - qualified, , dedicated professionals. It

should not be solely the responsibility of the new or junior

staff. With the development of more multi-purpose, complex
software systems, there is. a greater need for software

- 16 - 25

maintainers who 'tan readily understand the entire system.

Traditionally, management has not rewarded personnel who
performed software maintenance as generously as those who
performed software development.

. It was generally thought
that systems, .analystS, designers;` and developers 'were
responsible for the most difficult,, challenging: tasks and
therq,bre, must be-more capable.

.

While this attitude is still cotmon there is an increasing
awareness by management, of :.the importance of software
maintenance' to the successful, smooth operation of . an
organizatioh. Many technical' personnel, however still view
software maintenance as an assignment.. to be avoided at all,
costs. ,There 4 too often.a general lack of redognition that
a good maintainer must 'be a highly- skilled, Competent,
programinei- and analyst concerned both with making the actual
changes and with assessing the impact of those changes on the
system and its environment.

4

5.0 HE IDEAL MAINTAINER

Sof:twaee maintenance,ls-the lifeblood of an ADP organization.

Persons assi,gned to ,perform maintenance must effectively. meet
the challenge of ma4.ntaining a softWare system while- keeping

the user satisfied, costs ''down, -ancCtfte:system.'operating

''rhe characteristic, qualities, of '.this . ideal maintainer

include

-Flexibility - The ability to adapt 4to:-.Aiifferent or

changing styles.of coding, user requests,' and priorities.

'Self-motivation - the ability to, independently initiate

and complete voe* after receivOgi -an assignment.
.

Res-pOnsibi/11- reliability; peefOrmance of assigned

tasks tn a dependable-timely manner. .
:dependable,,

.
4. .1 . .

., .

..

',Creativity - the ability to .apply -innovative and ..novel

idea's which result in practical solutions.

.
.-, . .

.

Discipline - the -abilfty to .be consistent in trip

performance of dut'ies and not'prone to trying haphazard

approaches.

An'a/ytic - the ability to apply well
problem..

,

4,-.

Thorough - to-addeeSs°even the smallest detail fq ensure

that all aspects'Of the prPb1em-are understOod 6n0 nptning..

is left untested.
,.:

though.tou analysis

ExiDerience: 7 to ,have'been'1.?..xpoSed. tO a variety

applications and programming

The maintainer 'a - senior, experienced

:ProfesSiOnahO. c'an' perform tn'e-J-Un4ional activities

whiChur clueing: the software.. life ,cy'cle. Equally

iMIDort'aitt!-:.from .a .'maintenance :Standpoint,:the maintainer

should be' extremely knowledgeOl.e.absouttheiing_ system
.66fore attempting

The maintainer must be ablet.o:_anaj42e-i:,heprObiem and the

impact on the program, determine the requirements and .clesign

changeS necessary for thediiltion, test the''#14ion. until

the desired results obtained; and then!:..;reie;asettie

...revis*eoftware to operationsor the user. The maintainer's

task both intellectually and ,technicailY'diffic41t.
MaintenaliOe is an activity where everything that can adi wrong

eventually. does. The problems will continue to surface and

18

enhancements will be requested as long as the system is used.
It is a function which must be anticipated and planned for.
It is also a function for which there may be an unending
succession of_ emergencies to which staff must bd assigned
from other "more important" work.

The maintainer is also. an intermediary between the
application. system's support staff and the e users.
Maintenance, unlike development, cannot start with a clean
slate and not be affected by previous decisions and work. It
often.takes a great. deal of time and patience to analyze both

userssers needs and the existing system, and then to
carefully''and adequately implement the existing changes.

In the final analysis, the most important function of an
application .system software support activity is software
maintenance. It is the maintenance, and the response to the
user problems which arise, which are always in the spotlight.
Unfortunately, there is usually far less attention paid to,
maintenance when it is done well and the users are pleased.
Maintenance is an ongoing, almost always intense, effort
.which should be spotlighted for its:successes, as well as its
failures.

- 19 -
28

rg,

oe,

6.0 SYSTEM MAINTENANCE' VS SYSTEM REDESIGN

Although mapItenance is an ongoing process, there comes a

time 7-10th,eil--- serious consideration should be given to

redesigning a software system. A major concern of managers

and software engineers is how to determine whether a system
is hopelessly
maintained.
not be a

benefit
become
against

flawed or whether it can be successfully
mittedly, the thought' of software redesign may
fortable one. Nevertheless, the costs and

the continued maintenance of software which have
prone, ineffective, and costly must be weighed
of redesigning the system.

While there are no absolute rules on when to rebuild rather

than maintain the existing system, some of the factors to
consider in weighing a decision to redesign or maintain are

discussed in this section. These characteristics are meant
to be general "rules of thumb" which can assist a manager in

understanding the problems in maintaining an' existing system
and in deciding whether or not it has outlived its usefulness

to the organization.

Table.4 - Characteristics of Systems Which.
Are Candidates for Redesign

1. Frequent system failures
2. Code over seven-to-ten years old
3. Overly complex program structure and logic

4. Code written for outdated hardware
5. Running in emulation'mode
6. Very large modules or unit subroutines
7 Excessive resource requirements
8. Hard-coded parameters which are subject to

change
9. Difficulty in keeping maintainers
10. Seriously deficient documentation
11. Missing or incomplete design specifications_

When a decision has been reached to redesign or ,,tta stop

supporting a system, he decision can be implementOdo4h a
number of ways. Support can simply be removed and the system
can die thrpugh neglect; the minimum'support needed to keep
it functioning may be provided while a new system is built;

or the system may be rejuvenated section by section and given

- 20 -
.29

an extended life. How the redtsign is affepted depends on
the individual circumstances of the system, its operating
environment, and the needs'of the organization it supports.

The potential for redesign as opposed to continued
maintenance is directly proportional to the number of
characteristics listed in Table 4. The greater the number of
characteristics present, the greater the potential for
redesign.

6.1 Frequent System Failures

A system which is in virtually constant need of corrective
maintenance is a prime candidate for redesign. As systems
age and additional maintenance is performed on them, many
become increasing fragile and susceptible to changes. The'

older the code; the more likely frequent modifications, new
requir ts, and enhancements will cause the system to break
down.

An analysis of errors should be made to determine whether the
entire 'system is responsible for the failures, or if a few
modules,or sections of code are at fault. If the latter is
found to be the .case, then redesigning those parts of the
system-may suffice.

6.2 Code Over Seven Years Old

The estimated life cycle of a major application system is
seven-to-ten years. Software tends to deteriorat4e with age
as a result of numerous fixes and patches. If a system is
more than seven years old, .there is a high probability that
it is outdated and expensive to run. A great deal of the
code in use today falls into this category. After
seven-to-ten years of maintenadce, many systems have evolved
to where, additional . enhancements or fixes are very
time-consuming to make. A substantial portion of this code
is probably neither structured, nor well-written. While this
code was adequate and correct for the original environment,
changes in technology and applications may ,have rendered it
inefficient, difficult to revise, and in some cases obsolete.

However, if the system was designed and developed in a

systematic, maintainable manner, and if maintenance was
carefully performed and documented using established
standards and guidelines, it may be possible to run it
efficiently and eff ctively for many more-years.

- 21 -

30

6.3 Overly Complex Program Structure And Logic Flow

"Keep it simple" should be the golden rule of all programming
standards and guidelines. Too often, programmers engage in
efforts to write a section of code in the least number o

statements or utilizing the 'smallest amount of memor,
possible. This approach to coding has resulted in complex
code which is virtually incomprehensible. Poor progr m
structure contributes to complexity. If the system being
maintained contains a great deal of this type of code and the
documentation is also severely deficient, it is a candidate
for redesign.

Complexity also refers to the level of decision making
present in the code. The greater the number of decision
paths, the more complex the software is likely to be.

Additionally, the greater the number of linearly independent
control paths in a prograt, the greater the program
complexity. Programs characterized by some or all of the
following attributes are usually very difficult to maintain
and are candidates for redesign:

- excessive use of DO loops
- excessive use of IF statements
- unnecessary GOTO statements
- embedded constants and literals
- unnecessary use of global variables
- self-modifying code
- multiple entry or exit modules
- exgressive interaction between modules
- modules which perform same or similar functions.

6.4 Code Written For Previous Generation Hardware

Few industries have experienced as rapid a growth as- the
computer industry, particularly in the area of hardware. Not

only have there been significant technological advances, but,

the cost of hardware has decreased ten-fold during the last
decade. This phenomenon has generated a variety of powerful
hardware systems. Software written for earlier generations
of hardware is often inefficient on newer systems. 'h. Attempts

to superficially modify the code to take advantage of the
newer hardware is generally ineffective, time - consuming and

expensive.

6.5 Running In Emulation Mode

One of the techniques used to keep a system running on newer
hardware is to emulate the original hardware and operating
system. Emulation refers to the capacity of one system to
execute- a language written for another machine. In effect,
it extends the architecture (hardware and software) of the
host machine to include the range of the machine being
emulated. This is normally done when .resources are not
available to convert a system, or the costs would be
prohibitive. These systems run a very fikne line between
functional usefulness 'ane_total_ obsolescAuce. One ofd the
major difficulties in maintaining this type of system is
finding maintainers who are familiar with the original
hardware and who are willing to maintain it. Since the
hardware -outdated,' the specific skills deVeloped%
maintaining the system. have little applicability elsewhere.
Thus, the career development potential of supporting such a
system is not very promising.

6.6 Very Large Modules Or Unit Subroutines

"Mega-systems".which were written as one or several very
large programs or 'sub-programs (thousands or
tens-of-thousands of lines of code per program) can be
extremely difficult to maintain. The size of a mod e is
usually directly proportional to the level of effort
necessary to maintain it. If the large modules can be
restructured and divided into smaller, functionally related
sections, the maintainability of the system will be improved.

,6.7 Excessive Resource Requirements

An application system.which requires a great deal of CPU
time, mentory, storage, or other system resources can place a
very serious burden on all ADP users. These "resource hog"
systems which prevent other jobs from running, may not only
require the addition of an extra shift, but may degrade the
service to all users. Questions which should be answered
when deciding what (to do about such a system include:

- Is it cheaper to add more computer power or to
redesign and reimplement the system?

- Will a redesign reduce the resource requirements?
If it won't, then there'is no use in redesigning.

- 23 -
32

6.8 Hard Oleded Parameters Which Are Subject To Change

Many older systems were designed with the values of

parameters used in performing specific calculations "hard
coded" into the source code rather than stored in a table or

read in fr9m a data file. When changes in these values are
necessary, (withholding rates, for example) each program in

the system must be examined, modified and recompiled as

necessary. This is a time-consuming, error prone process

which is costly both in terms of the resources necessary to

make the changes and the delay in getting the changes

.installed.

If possible, the programs should be modified to, handle the

input of parameters in a single module or to read the

parameters from a central table of values. If this can't be

done, serious consideration should be given to redesigning

the system.

6.9 Difficulty In Keeping Maintainers

Programs written in low level languages, particularly

assembler, require an excessive amount of time and effort to

maintain. Generally, such languages are not widely taught or

known. Therefore, it will be increasingly difficult to find

maintainers who already know the language. Even if such

maintainers are found, thir experience with low-level

languages is probably dated.

6.10 Seriously Deficient Documentation

One of the most common software maintenance problems is the

lack of adequate documentation. In most organizations, the
documentation ranges from nonexistent to out-of-date. Even

if the documentation. is good when delivered, it will often

steadily and rapidly deteriorate as the software is modified.

In some cases, the documentation is up-to-date, but still not

useful. This can result, when the documentation is produced

by someone who does not understand the software or what is

needed.
0
Perhaps the worst documentation is that which is

well - structured and formatted but which is incorrect or

outdated. If there is no documentation, the maintainer will

be forced to analyze the code in order to try to 'understand

the system. If the documentation is physically deteriorated,

the maintainer will be' skeptical of it and verify its

accuracy. If 'it looks good on% the surface, but is

technically incorrect, the maintain er.may mistakenly believe

it to be correct and accept what it contains. This will

- 24

.33

result in serious problems over and above those which
originally necessitated the initial maintenance./

6.11' Missing Or Incomplete Design Specifications

Knowing "how and why" a syptem works is essential to good
maintenance. If the reqN.rements and design specifications
are missing or incomplete, the task of the maintainer will be
more difficult. It is very important for the maintainer to
not only understand what a system is doing, but how it is
implemented, and why it was designed. Missing or incomplete
design specifications often result in end products which do
not perform as intended. The user must then request new
changes and enhancements.

(

alw

7.0 CONTROLLING SOFTWARECHANGES

The key to controlling software maintenance is to organize it

as a visible, discrete function and, to the extent possible,
plan for it. It is not enough for the software manager to

manage the budget, people, and schedules. It is equally

important that the software changes be managed and

controlled.

Table 5 - Sugges.ted Policies for Controlling
Software Changes

1. Require formal` (written) requests for all changes.

2. 'Reyiew all change requests and limit changes to

tholpe approved.

3. Analyze and evaluate tii-et/pe and frequency of

change requests.

4. Consider the degree to which a change is needed
and its anticipated use.

5. Evaluate change's to ensuee that they are not
incompatible with the original system design and
intent. No change should be implemented without
careful consideration of it ramifications.

, 6. Emphasize the need to determine whether a proposed
change will enhance or degrade the system.

7. ApprcrVe changes only if the benefits outweigh the
costs.

8. Schedule all maintenance.

9. Enforce documentation and coding standards.

10. Require that all changes be implemented using
modern, programming practices.

11. Plan for preventive maintenance.

- 26 -

f 35

7.1 Controlling Perfective Maintenance

Perfective maintenance comprises an estimated 60%*- of the
total maintenance effort. It deals primarily with expanding,
extending, and enhancing a system to give it greater power;
more flexibility, additional capabilities, or greater
reliability. Requests for perfective maintenance are
initiated by three different groups:

A
the user, upper

management, and the maintenance staff.

The user is almost never completely satisfied with a system.
Either it does -not perform up to expectations, or, as the
user gains confidence in the system, additional features
become obvious and the maintenance staff is asked to add
those features; This is a normal evolution in all software
systems and must be planned for when developing budget
requests and resource allocation schedules.

Upper management drives the perfective maintenance process:by
requesting new and enhanced ,features which -must be
incorporated into existing application systems. Once again,
this is a normal part of the functioning of any organization
and must be planned for in the maintenance budget.

Finally, the maintenance staff drives the perfective,
maintenance process. As a maintainer works with a system,
inefficiencies and potential problems are often found: These
problems, while not requiring immediate attention, are such
that at some point in time they could have a significant
impact on either the functioning of the system or on the
ability to maintain it. Thus, the "cleaning up" of code
(often referred to as "preventive maintenance") is an
important perfective maintenance process which should be
planned for and included in the resource allocation schedule.
The proverbial "st.itch in time" of preventive maintenance can-
often prevent minor problems in a systems from becoming major
problems at'some later date. This undoubtedly will make
future maintenance easier as a result of the "cleaning up" of
the code.

The management of perfective maintenance deals primarily with
maintaining an orderly process' in which'all requests are
formally submitted, reviewed, assigned a priority, and

--scheduled. This does not mean that- unnecessary delays should
be built into the process, or that in small organizations
these steps are not consolidated. Rather, it defines a
philosophical approach which can help the maintenance manager
bring order to the maintenance environment.

There should be a centralized approval point for all
Maintenance projects. , This may be the maintenance project
manager or, for larger systems or organizations, a review

- 27 -- 36

board. Changes should not just happen to a system. When the

need for a change or enhancement arises, a formal written

request should be submitted. "Each request should be

evaluated on the basis of resource requirements, time to

complete the work, impact on the existing system and other
maintenance efforts, and justification of need. The

centralized approval process will enable one person or group
of persons to have knowledge of all the requested and actual

work being- performed on the system. If this is not done,
there is the likelihood that two or more independent changes

to the system will be in conflict with one another and as a
result, the system will not _function properly. Additionally,
different users will often request the same enhancements to a
system but will have small differences in the ,details. By

coordinating these requests, details can be combined and the

total amount of resources required can be reduced.

If the system requires maintenance as a result of changes in

policy or procedures in thel3rganization, an evaluation of
the cost and effects of the changes should be .prepared for

upper .management. Ideally, this should be prepared prior to
the decision to institute the changes, but even if it isnot,
manageMent and the users must be aware of the' costs, Users

often request enhancements to a system because it "would be
nice to have" or another.system has a similar feature.. TheSe
requested enhancements should be evaluated and the estimated
costs reported to the user. Regardless of whether or not the
users are responsible for funding the work, it is important.

to keep them aware of the actual costs of their requests.'

Doing so will help to minimize the. .amount of unneeded .:or

marginally needed enhancements which mustbe installed on'the
system. 'In addition, this type of iriterchange with 4e user
will help the maintenance_manager in evaluating and assigning
priorities to the work requests.

In many organizations there is a .significant backlog of

maintenance' work r.equ'ests. 'Users need to underStand the
level of effort required to meet ..their requests and the

relative priority of the Work in relationship 'to other user

requests. This can only be accomplished by involving all

parties in the discussions and keeping everyone inforMed of
the schedules and actual progress;

7.2 Controlling Adaptive Maintenance

Adaptive maintenance comprises approximately 20% of the

maintenance burden. It consists of any effort required to
keep a system functioning as a result of changes in the

environment in which it must operate, and is, to a great

degree, beyond the .control of the software maintenance

manager. Changes to the operating system, system utilities,

- 28 - 37

terminal devices, and the rules, laws, and regulations which
the software must incorporate, are the primary causes of
adaptive maintenance. The maintenance efforts required are
usually non-productive in terms of improving the application
system.

There is little that the software maintainer can do to
control changes to rules and legislation. These changes, to
the extent possible, should be anticipated and the code
struatured in a manner which facilitates making the needed
changes. This type of adaptive maintenance usually must be
performed whenever it is required. Management should always
be given feedback regarding the impact that changes in
policies. and regulations have on-the maintenance of a system,
,especially the cost.' .This feedback will impr 'bve the future

makingaking process and may reduce the level. of adaptive
maintenance.

. ,

In many organizations, the application support organization
functions. independently of , the .,computer facility
organizatiOn. As a result, there is inadequate communication
and understanding by each. group regarding the'impact of
decisions'. and'work on the other function. Thus, changet may'
be made to the environment and announced toy, the user
community without giving the application support funcon an
opportUnity to analyze the impact of the charges and the
effect on `the application systet. -Similarly, changes or-
additions to. an application system which increate. the
computer resourcerequirements may cause serious problems
with the functioning of all applications using the computer.

Therefore; it' is very important that ' facilitiet
organization and the applications support brganization work
closely to minimize the impact of one organizatioWs work
the other organization... There.are times when. a choice siMply.:'
'doe's:not exist, but usually, throiigh ad'equate planning and.
evalation, . both.._ organizations can 'accomplish their
objectives with a resulting net improvement for each.

The-application suppOrt manager has the responsibility 'tb
.know what changes to the environment are being planned and
considered, andto,.kee0:,:tanatetentinformed of their
potential -; impact doingthis, t4e total costs and the.impliaatiOnt of the chan'get can
be reviewed management. Decisions can then ,be..made
regarding,whichorganization should bear ..the cost't.'ofthe
resulting required adaptive maintenance of the apOl,ibation
sPstems.'

29 -

7.3 COntrolling torrective Maintenance

Corrective mkintenance is primarily the identification and

removal of errors, bugs, and other code defects that either'

reduce the effectiveness of the software or ..render the

product useless. This category of Maintenance'is concerned
with returning the code to an operational state. Controls

are needed to ensure that the occurrence of errors or bugs

are the exception rather than the..ruie.

Most of the cost of Software Amaintenance is often assumed to

be the result of poor workmanship durilig development and

prio+ maintenance phases of the system. While this is a

contributing cause, it is very rare for even a ',;perfect"

system to not require significant maintenance during its

lifetime. While software does not "break" in the Sense ,tha*

a piece of hardware can fail, it can become non-function

or faulty due to changeS in the environment in which it

Oper4te, the size or sophistication of the user ',community,

the 'amount of data it must process, or damage to code which

is-the 'result of other maintenan'eeef forts on other parts of

the system. Corrective mairit*hance is necessitated by

discovery of a flaw which has always eqste-4i4 in the system or

Was iptroduCe0 during prior maintenance

Difficulties encountered during corrective' can be

reduced significantly by the adoption and enforcement 91.

appropriatestandards and procedures during the develOpment

and maintenance of the software, While it is probably not

e-
..

possibl'0;.eliminatecorrective maintenance, the consistent

and disCipliried'adhrente to effective 4t6ign and programming

standardScani'and$4, significantly reduce the corrective

maintenan
-

,h07-clen

30 -

4

8.0 IMPROVING SOFTWARE MAINTENANCE

'Maintainability is the ease with; w,IicF software can he
changed to satisfy user reqpireinents.or.-agir,be corrected when
deficiencieS are detected. The MaintainOility of a . system
must be taken into oonsideration:throughoOt:the life cycle of° .

that system Many techniques and aias.lexist.tb assist the
system :developer,.bUVtherehaSjpeen iitti,e)6Mphasis on aids
for the maintainer liowever, since the proce'SSOSWhieh-occur
in the maintenance phase are similar.._to,thOSSOf the
development phase, there: Is conSiderablea::. overlap, in the
applicability of the development.Hai,ds, inthOial.nenance
environMent,

The philosOP eS, procedures, and techniquesiscihissed in
this section should be utilized throughout the.:14fe;:bycle of
a system in order to provide maintainable software;': Software
systems which were not developed using these teChhiques can
also benefit from their application during major maintenance
activities.' In other words, if a System must be maintained,
the maintainability of. the system can;be improved by applying
the ideas; discussed' in this . section' to the parts of the
system 44h*ich are modified Auring the maintenance process.
While t'heeffect.will not 1Ye. as pronOUnced as when programs
are "developed with maintenance in mirifuture- maintenance
efforts can be made easier by ,:utiIizing the techniques
described in this section to"MaintaihSystems with future
maintenance in Mind" '

Table' - Factors Which Affect StIrrpe
-,q Code Maintainability

4

1: Use of, singlehigh or'ae anguage
,

2.. CditDnventi6ns for variable names,
es, format, grouping, etc.

IND

Oture and modularity

andand data, definitions
1

ea4i'ingful comments in the code

it
AVOida, * of compiler extensions,

..,

tit

,.(4:rodt Guidelines
:.;.**,.'.. .

.

'7bClrY9.e'=code guidelines and stabdrds aidtm4intaihility by

`pidVlding a structure and fmamework wittahl.Ch systems can,
be developed and maintained in a COMMOmOre easily

understodb, manner.

8.1.1 Use a singPebigh-order language

The use of more than one programMing languagce, kir:ple use of,

machine,., assembler or outdated la.ngua0sc..*.whent is not
absolutely necessary to do so, can seel.OuSly:1-mpact the

maintainability of a system. When more thanOhe'jOnguage.;is'
'employed, the potential for gommunication prob1.emSetw..e.en

modules is increased'. Systems written in to*Order or

outdate languages are difficult to maintain .beOause they

gener 1/1y.require more source code to perform the same amountgener
of w '!!'.Wherever possible, a single high order -language

,44.

(HOLY. htfuld be used. Advantages of using a HOL indlude.:

. - HOLs .resemble English and.are easy to learn, read

and understand;

There are standards for the commonly used HOLs

(COBOL and FORTRAN).

There are a substabtiaLnumber of programmers
4 understand and anUsp.HOL effectiiely.. :AkS

Many. of the oldeff.MaChne languages are no'. longer

supported by'Lthe Manufacturer.

who

Fewer prO'grammens understand machine la nguages, and

fe'Wer'stil.lJei). use them effectively..

Hors are' Seit'2dOcumenting to 4...larKe

It: is easier to'move from one environmentto another
with an HOL.

8:1.? COdingconVentions

The. `f, irst obstacle-a maintainer must conquer is the code

Unfortunatly, a great deal of the source code
written,.by developers and maintainers is not written with the

futui-Maintain.er. in mind. Thus, thereadability of source
code*Often ,v.ery poor.

ht gtif:ns1Q.Qumtn/in.g 'AM Krillgn

in .i.i:141.EmsAlat.dfrimal

- 32 - 41'

Regardless of the programming language(s) used, simple' rules
regatding the usR .-of the language(s) and the physical
formatting of,theHsource code should be established. Code
standards do not' h-are-to be lengthy or complex in order to be
effective. In faot, like the code itself, the best standards
are simple and short.' ,The following'techniques can improve
program readability and'should be used as the basis for a
code standard.

-.Keep it simple. Coffiplicated, fancy, exotic, tricky,
confusing, or ',cute!' constructions should be avoided
whenever a simpler method is available. Use common
sense and write code -as .if.you had to pick, it up and
maintain it without ever having seen it.-before.

- Indentation, when properly utilized between sections of
bode, serves to block the listing into segments. Inden-
tation and spacing are both ways to show subordination.
It isivery difficult to, follow code which continues line,
after line without a break or change in form.

-

:Extenively comment the Code with meaningful ,comments.
Do got. comment for ,commebt's sake. Rather, comment in
Ord$6, to communicate to subsequent maintainers not only

4.1.., 1.4-hat was done and how it was done, but villy it was done
:44-1 this manner. t

-. llse of. meaningful variable namW-44s fne, of. the most.
important coding principles /t.:0!-rb.,11ow when developing
and maintaining programs. The name. of a variable should
convey both what it is anditAS. used. .

- Similar variable namea should be aiioided. Each variable
name should be unique in order to prevent confusion.

s...

- When numerica are used, they should be placed at the end
of. the variable. Some of the more common errors are
caused by mistaking variable names which begin with the
numer cs 0,1,2,5 for 0,I,Z,S, respectively. Numbers
used s .program tags or labels shOuld be sequential.

- Logically related functfbns shouleht kroubed :together
in the: same module or set of modules. It .is extremely
difficult to analyze the .program flow when execution
jumps in and out of different portions of code. To the'

textent possible, the logic flow shoUld be from top to
bottom of the program.

- Avoid non -standard .features . of the,.versioW of the
language, being.used unless absolutely necessary. Fail-
ure to do'so will exacerbate problems of conversion or
movement. 'of the program .to another machine or system.

-J3 42

8.1.3 Structured, modular software:.

While there. has been considerable debate regar4ng structured
programming, the .consensus is that generallyl.:Such code is
easier to read'. A structured program is' constructed with a

set:of.opntrol structures which each have one exit and
:Onetry-7,ptifilt. -Structured programming ',techniqueS. are
.ell-defined methods which incorporate top-down design and
implementation and strict use of structured programming
constructs. Whether the strict definition, or a more general
approach (which is intended, to organize the code and reduce-
its'complexity) is used, structured'programming has proven to
be useful ip improving the maintainability of a system.

Modularity refers to the structure of a program. A program
comprised of small, hierarchical units or sets of routines,
where each performs a particular, unique function, is said to
be: Modular, is not, as is 'often thought, mere program
segmentationk module is said to have two basic
determinants: cohesiveness and coupling.

Cohesion refers to the 'degree to which the functions or

processing elements within a module- are related or bound
together. It is the intra- module relativeness. The greater
the cohesion, the less impact changes will have on the
's=oftware.

Coupling refers to the degree that modules are dependent upon
each _other. The less dependency or interaction there is
between modules,, the better, from both a functional and a

maintenance standpoint. A high degree of cohesion almost
always assures :a lower degree of coupling. Controlling,.
,cohesion andYcoupling are very effective techniques in the
design andMaintenance of structured', modular software.

of the:MoSt obvious advantages of designing and coding

iSteuctured modules is that if it is, determined that a `

7i,t"'unction is no longer needed, only-that module is affected.

The size of a module is dependent upon its function. It

should, however, be kept as- small as possible. Module
should be constructed using the following basic design

principles:

- Modules should perform only one principal function._

Interaction between modules should be minimal.

- Modules should have only one entry and one exit point.)

43
- 314 -

8.1.4 Standard data definitions

It is very important that individual modules of a system not

only, be able to communicate with one another, but that the
maintainer undertand what is being communicate. A typical
problem in a large multi-module system is that one person
will use a set of names for data items which do not match the
names used by another person on the team. Even more serious
is"the use of the same names to represent two different data
items. Thus, it is imperative that a standard set of data
definitions be developed for a system. These data
definitions will define the name, physical attributes,
purpose, and content of each data element utilized in the
system. 'These names should be as descriptive and meaningful
as possible. If this is consistently and correctly, .done, the
task of reading and understanding each module and ensuring
correct communication, between each module is greatly
simplified.

8.1.5 Well-commented code

Good commentary increases the intelligibility of source code.
Irt addition to making programs more readable, comments serve
two other vital purposes. They provide. information on the

purpose and history of the program, its origin (the author,
creation and change dates)-, the name and number of
subroutines, and input/output requirements and formats. They
also provide operation control information, instructions, and
recommendations to help the maintainer understand aspects of
the code that are not clear.

Maintainers (and managers) often mistakenly confuse quantity'

for quality when writing comments. The purpose of comments
is to conveyinformation needed to understand the'process and
the reasons for implementing it in that specific manner, not
how .it is being done. Comments should be thought of as the

primary form of documentation. They should include the
follow4 ing: -

- what the code is doing, '

- why a process is being performed,
- why' it is implemented in the specific manner,
- how this section of code affects and interacts
with other sections of code,

- any known or potential problems,
- when the changes were made,
- who made the changes,
- what specific code was,. modified,
- any other information which might help a future
maintainer in understanding and modifying the code.

- 35 -
44

' 8.1.6 Avoid compiler extensions

The use of no,-standard features of a complier can have
4 serious effects on thee maintainability of a system. If a

compiler is changed, or the application, system must be
transported to anew machine, there is a very great risk that
the extensions of, the previous ,compiler will not be
compatible with the new compiler. Thus, it is best to
refrain from languagek-extensions and to stay in conformance
with the basic features of the language. If it is necessary
to use a compiler extension, its use should be
well-documefited.

8.2 Documentation Guidelines

The 'documentation of a system should start with the original
requirements and design specifications and continue
throughout the life .cycle of the systet. Good software
pocumentation,is essential to good maintenance.

Table 7 - Documentation Guidance

1. Keep it simple and concise.

2. The maintainer's first source of documentation is
the source code.

3. The manager's first source of documentation is the
design specifications and implementation reports.

4. The user's first source of documentation is the
Users Guide and the maintainer.

5. Do not under document. Do not over document.

6. Documentation cannot be "almost correct". Either
it is up-to-date, or it is useless.

7. "Documentation maintenance is a vital part of
system maintenance.

8.' Dccumentation should be available to the
maintainer at all times.

The documentation must be planned so a maintainer can quickly
find the needed information. A number of methodologies and
guidelines exist which stress differing formats and styles.
While preference may differ on-which methodology to use, the
important element is to adopt a documentation standard and to
then consistently enforce adherence to it for all software
projects.

The success of a software maintenance effort is dependent on
how well information about the system is communicated to the
maintainer. Documentation should support the useable
transfer of pertinent information. Documentation guidelilhes
should include' instructions on what information must be
provided, how it should be structured, and where the
information should be kept. In establishing these guidelines
and standards, keep in mind that the purpose is to
communicate necessary, dritical information, not to
communicate all information.

A

Basically, the documentation standards should require the
inclusion of all. pertinent material in a dodumentation folder
or notebook. This material should. cover all phases of the
software life cycle and must be -kept fully updated...
Management must enforce documentation standatds;.and:NOT
permit short cuts. There should be,a equirementtb)p64iete,
and/or update documentation beforp.np ork asilgrtmeht 0S.a_

begun,

-

The kevto successful documentation :is that not onIymust the.
necessary information be,,d6eded, it must be easily and
quickly retrievable by the maintainer. On-line documentation
which has controlled access and update capabilities is the
beSt form of documentation for the maintaiber. If the
documentation cannot be kept on-line, a mechanism must exist
to permit 'access to the hard-copy. documentation by the
maintainer at any time.

If documentation guidelines, or any other software guidelines
or standards, are .to be effective, they must be supported by
a level of management high enough within the organization to
ensure enforcement by all who use the software or are
involved with software maintenance. Such guidelines, when
supported by .management, will help direct attention toward
the need for greater discipline in the software maintenance
process.

For further information on documentation guidelines and
standards, see [FIPS38], [FIPS64], and [NBS87].

8.3 Coding And Review Techniques

The techniques listed in this section have been found to be

very effective in the generation °of maintainable systems.
Not all techniques are generally applicable to all
organizations, but it is,recommended that they be considered.

0 Table 8 - Coding and Review Techniques

1. Top down / Bottom up design and implementation

2. I Peer revi,ews

3. Walkthroughs

4. Chief programmer team

8.3.1 Top down/bottom up approach

A top-down design approach (development or enhancements)

involves starting at the macro or overview level and

successfully breaking each program component or large,

complex problem into smaller less complicated segments.
These segments are'then decomposed into even smaller segments
until the lowest leve module of the original problem is
defined for each branch in the logic flow tree.

In general, tops- implies that major functions are

considered first. Once it is clear how they fit together,
the next, lower level functions are designed. During the

first phase, the lower level functions are often created as
empty black boxes or modules that simply return control to

the major level or calling functions.

The bottom-up design approach begins with the lowest level of

elements. These are combined into larger components which
are then combined into divisions, and finally, the divisions
are combined into a program. A bottom-up approach emphasizes
designing the fundamental or "atomic" level modules first and

then using these modules as building blocks for the entire
system.

Both of these approaches are valid and superior to a random

"seat-of-the-pants" approach. In most situations, a

combination of top-down and bottom-up can be utilized to

-38- 47

develop a clear, concise, maintainable system. The adoption
and adherence to either approach provides a .structure or

methodology which, enables -persons working on a system to
4-communica,te with one another in a manner which is consistent
and understandable.

8.3.2 Peer reviews

Peer review is a quality assurance method ,in which two or

more programmers review and critique each other's work for
accuracy and consistency with other parts of the system.

This type of review is normally done by giving a section of .
code developed by one programmer to one or more other peer

programmer8 who are charged with identifying what they

consider to be errors and potential problems. It is

important to establish and to keep
an

in the

participan'tsiridsthat the process is 'not an evaluation of

a prdOatths ::caPabilitiesorperformance.- Rather it is an
analysis and of :code. As stated in the name,

eeviews:'are perfOMed. ',on a peer basis(programmer to
programmer) and should neV.07be used as a basis for employee
evaluation. Indeed, managers should not,' if

possible,- be involved in the peer reviews.

*4 N8.3.3 Walkthroughs (

Walkthroughs of apr.p.posed solution or implementation of a

maintenance task, an range from informal to formal,
unstructured to structured, and simple to full-scale.. The

principle involVed -.ilWalkthroughs is,simply that "two heads

iare better'theronel sIi7)., its simplest form, a walkthrough can
be two mailltOners:sitting down and discussing a task which
one of therflOwo.kin :On. In its more.complex forms, ther,g$

may be 10Structu :.agenda, report forins, and a recording

walkth4-q..)1(S.4

secreta/Man,a,
V fi.;,.Vlis is an excellent way for a

.may or may not participate in
,

manager to timed: about the work being performed by

the team,
-1,

The basiOAPrOofa,:wal4<through is for the person whose

work is:4014'7i)4,ei.401.to describe- in detail the proposed
solution or**1st..A'9.he .code. The reviewer(s) ask(s)
questions 't'..;96140..P,T-eas' where questions arise and point
out any erri:iWkift4-,problems which are spotted. The

goal, as jA:ii).eerr*IeWs is to minimize the number of
design, logian4VW-91?0,ing flaws which remain in the

system. Walk#1000's:at*:',Similar to peer reviews, but differ
in that the MariageNilia4,besent; the reviewers meet as a

group'to discl.tS.hew0,00e consideration; and there are
often formal TeCoiAillga6rideporting mechanisms.

. .,; .,1 . . ,.

Two important points should be stressed regarding the
manager's role in a walkthrough:

1. Walkthroughs should never be used as part of an employee
evaluation. The goal is an open; frank dialogue which
results in the refinement of good ideas and the changing
or elimination of bad'ones.

2. The manager's role should only be as active ,as his or
her technical expertise regarding the subject matter
permits. The manager must recognize that !the other
members of the walkthrough team probably have greater
technical knowledge about the specific subject being
discussed. Participating in a passive manner can be an
excellent means to attain an understanding of the main-
tenance effort and to imprOve the manager's/ technical
understanding of the system.

8.3.4 Chief programmer team

The chief programmer team is based on the premise that" an
experienced programmer, supported by ,a team of programmers,
can produce computer programs with greater speed and
efficiency than a group of programMers working under the
traditional line and staff organization. The sizes of the
team can range 'Prom 3-10, with the chief programmer being,
responsible for overall design, development, review, and
evaluation of the work performed by the members of the team.
This can include the establishment and enforcement of rules
regarding programming style, control, and the integrity of
the programs.

The chief programmer functions as the focal point of the
maintenance team and is required to be' aware and familiar
with all work performed by the team. There is an eflormo4s
amount of administrative and technical responsibility placed
on the chief programmer. This person must have impeccable
leadership abilities, a strong technical capability, and-the
ability and willingness to delegate work and responsibility.

8.4. Change COntrol

Change control is necessary, to ensure that all maintenance
requests are handled accurately, completely, and in a timely
manner. It helps Assure adherence to the established
standards and performance criteria for the system and
facilitates communication' between the mainenance, 'team
members and the maintenance manager.

Table 9 - tontroliing Changes

1. Change request.

2. Code audit

3. Review and Approval

8.4.1 Change request

All changes considered for a system should be formally
requested in writing. These requests may ,be initiated by the
user.or maintainer in response to discovered errors, new
recwirements, or changing needs.' Procedures may vary
regarding the format of a change request, but it is
imperative that each request be -fully docUmented in writing
so that it can be formally i'eviewed. The review may be
performed by the project manager or a change review board.
The key; however, is that there must ,Ipe a formal,
well-defined mechanism for initiating a request for changes
or enhancements to a system,2:Change requests :.shobld be
carefully, evaluated and deciSions to proceed should be based
on all the pertinent areas of consideration (probable effects
on the system, actual need, resource requiremgnts vs resource
availability, budgetary consideritions, priority, etc.). The
decision and reasons for the decision should be recorded and
inclUded in the permanent documentation of the system.

The change request should be submitted.on forms which contain
the following information:

-41 - 50

. - name of requester
- date of request
- purpose for request (error reported, enhancement,. etc)
- name Of program(s) affected
- section of code/line numbers affected
- name of document(s) affected
- name of data file(s) affected
- date request satisfactorily completed
- date new version operational
- name of maintainer
- date of review

name of reviewer
- review decision

8.4.2 Code audit

The code review or audit is a procedure used to determine how.
well the code adheres to the coding standards and practices
and to the design specifications. The primary objective of
code audits is to guarantee a high degree of uniformity
across the software. This becomet a critical, factor when
someone other than the original developer must understand and
maintain the software. Audits are also concerned. with such
prograM elements as. commentary, labeling, paragraphing,
initialization of common areas, and naming conventions. The
audit should be performed by someone other than the original
author. Questions addressed during an audit should include:

Are comments well constructed ?
- Do the comments provide meaningful information?

Are the comments consistent throughout the code?
Are the constants centrally defined and locally
initialized?

- Are the statement labels descriptive and sequential?
Is the code formatted in a readable manner?

- Is indentation and paging used to make the code
easier to read and understand?

8.4.3 Review and approval.

Review and approval is the ,final phase of the software change
control process. Prior to installation, each change
(correction, update, or enhancement) to a system should. 'be

formal/7 reviewed. In practice, this process ranges from the
review and sign-off by the project manager or user, to the

convening of a change review board to formally approve or
reject the changes. The purpose of this process is to ensure
that all of the requirements of the change request have been
met; that the system performs according to specifications;
that the changes willnot adversely impact the rest of the

42 -

system or _(0,6r, users; .that all procedures have been
followed:,OriarUles and guidelines adhered to; and that the
change is,

-
.indeed ready for installation the production

system. .11.11i review actions and findings should be added to
4,the systeOcumentation folder.

. ,

'8.5 Testing Standards And:ProeedUnes

Testing, like docuMentatiOn, is an' of software
maintenance which is often not done men. Whenever: possible,
the test procedures and test datashould be developed by
someone other than the personwho performed the actual
Maintenance ,on the system.. Ifle' testing, standards and
procedures Should define the degree.and depWOf testing to
be performed and the ,dispo'sition of' teat materials upon
successful Completiothe testing.

Testing is a critical coMpOnent. of softwareMOintenance. AS
such the test prodedures must be cons=istent and based on
sound principles. Whether the testfntt is ,Performeden the
entire system or on a single module within the system, the
same principles are required. They include the following:

- The test plan should define the expected output.

- Whenever possible, the test data should be prepared by
somedile other than the tester.

Both the valid, invalid, expected, and unexpected cases,
should be tested. .

The test should examine whether ())' not the program is
doing What it is supposed to.

- Testing is done to find errors,- not to prove,that,errors
do not exist.

For further information on testing, see [FIPS101], [NBS75],
[NBS93], [NBS98].

9.0 SOFTWARE- MAINTENANCE TOOLS

Software tools are computer programs which c'an be used "' the

deNe1:441ent, analysis, testing, Mathtenahp0, and management
or other computer -programs. and theirdocOMentation. ::;ThiS
.sectioh.- discusses some tools whiChcan be useful in
maintaining a software system. Generallythese tools can beH'
divided into two categories: technical,, and management.:,'The
technical tools can be further subdivided into those: which
process,' analyze, and test the system, and those Whichlelp:
the maintainer manipulate and change the source code and the
documentation. The management tools assist the maintenance .
manager, in controlling and tracking all-of the maintenance
tasks. .Table 10, lists some of thetools available to the
maintainer ahck:Ahe' maintenance. mavager. A glossary of
softwarejObliand techniques can be foundTi C.REIF77]..'

"Table 10 - Software Maintenance Tool&

Technical Tools.
Processing :Fools

Compilers,'
Cross referencer
Comparator
Traces/Dumps
Test data generator
Test coverage analyzer
Preprocessor

As,

',yerification/Validation

Clerical Tools
On-line Editor
Documentation Library
'Archival Capabilities
Reformatter
Data Dictionary

Management Tools
Problem Reporting
Status Reporting
Scheduling
Configuration Management

9.1 'Cross Refeen.Cer

One of thesingle most: useful aids to the maintainer is the
cross refei-en0e list which aecompanieS the compiler source
listing, It usually provides a:concise, .orderd analysis of
the data variablesineluding the loCatiOn and number of
times the Niariables::are used, as well .*aS other pertinent
information about. the program.

In large systems, tt's often difficult teP etermine which
modUles are called-.or used by other pro rams, and where
within the system a spedi.fid modUloP: Cara eter is used
What often' needed'' to` 'is 'the capacity to produce. and .

develop a:',cross reference listing'on an interprogram rather,
than on',Lan intraprogram basis. This ,:information can be
obtained :'-from some of the':.-ati.aildbie cross reference
generatorS. To 4the maintainer, such: infoilimationis useful
when attempting to backtrack to 'determine. where an error'
occurred..

C-ompaators

CbMparators'are softWbre.tools vhich accept two (or more):
sets . of input, and generate ateport which' lists the

Hiscrep-:ancies:hetween:the input data'. sets. This tool can te
used for -find.ingchanges in the;source code, input. data,
program: output,, etc., I.t is extremely -useful to the
maintainer who must ascertain i.fa change made to the system
'.caUsed it to fail or- work It can also' be used
to' `'ensure that 'on.e Set. Cf'testresults is identical to a
previous set, oridentity:.Where 01e: results' have changed...
Most comparators arediveloped-;fbr a'specifipsyStemfhey
May be general.in nature or work.:on: specific- 4)artS of the
system and perform specific functions.- They arerelatively
simple to build and are very valuable tools -,An ,:the
maintainer's tool box.

9.3 Diagnostic Routines

Diagnostic routines#assist the maintainer 'by reducing' the
amount of time and effort required for problem'resolutioh;
Some of the more commonlx used, routines include

-

- .

-trace.whiph generates an audit trail of actual
operation'S during execution

breakpoint whichj.qterupts prOgrAm..exeCution to
initiate debug aCtivities:

- 45 -

silveire:.it4c1 which nalivages program execution status
at anytoint to pt!rmit evaluation 4nd:Ye-initfation

, - 4-47m which give listings (usua1.19tinformatted or
form0.ted) of"-all or selected ponaons of

the program Repory at a n[ik!cific point in

t
I'ompilers often 0itde -diagnostic capabilities that can be
oievnally selected-4,o assist the'prOgracriater,ei.n analyzing the
,k-ecutlyn flow, and capture a myriad ofdataat predetermined.
.!pointn 1H the process:' In the hands of'a'skMed,,maintaineri

dijgnostics can help identify the seictiaTsof code
which cause the error, as well as what is taaing place7..there.

. While thse aids are,. ep.remely useful, the?:.,are ruSOally
,'"after'' the fact" tobls used to help determine What has :gone

ong with an operational. system. Far more useful.=are
diaF,nostio capabilities which ..,are'destgned and-implem'ghted.
within the source code as it is4eyelop.0.111-lis latteraype
of -diagnostic Is normally di.s;a1Dled, '',41tit can be turned on

thro'Cigh the use .,(.)f one or more control parameters.

Libraries
,

Mcst 'operating systems provide sUPport and .Utility libraries
whih contain stAmdart functional routines (square roots,

co:m.ne, absolute values, etc.). In addition, HOL

Thopprlern have many t;uilt-in functions which c0 utilized
programmer to,perform standard functioris-Just_ as
Ilraries provide standardized routines to perform

:ircce:.,es which are common to many., applications systeitis,

HIarge applte..at.ion system.s should 4tave a procedure library
9

contin:i.joiltines Which are common to various segments
of 'the a41..iation sy4Nrik: These functions and utility, ,

routines shOuTbe available to all persons working on the.,.;

s myste I'rom A7Jle developer to the maintainer. Applicatiohj;:.
upiL utility libraries assist bYT

navihg time'(the programmer does nQt have to reinvent
the inheel). V
simpli.fying the chan0:1g, of commonoode (changes all

prcF.rams module)..-ThiS usually, requires
relinking -or recompiling each kffected prog'ram, but

It el'iminates. the Jieed to chahge lines of. code in eaclii.

Che programs. .

/- enah'4ng wiin i:lise of utility Orikedures, deyg6ped by
cnedi'erson or gr:oup, by all persons working on the
:,ystem.

- :!acilitating maintenance of the3system by keeping the
oce ir a central librar'y or set of libraries*,

- 146 -

In addition to the stored'library routines,' all the source
code for the applications system shoUld be stored in a
centralized, on-line library.' Access to this library. should
be controlled by a librarian WhO has the duty of maintaining
the integrity. of the library and the code.

9.5 On-line Documentation,Libraries
.

.

t.
.

, ..' ..
.

Systet documentation normally consists of'oneor more foilders ',

or files in hardcoOy .form which are stored at a central
location. The need, far the maintainers to have access toithe
'information inhese .documentation folder's and the need to
keep the docuitehttion up-to -date and' secure are sometimes at'
cross -purpose'0 with ,one. another. Thus, it is recommended 0

.that as much. iocumenta'ti.on' as practical also be kept on-lipe
'in documentation libraries which the:rlaintainer can access at

'-.any time.. ,Updating" of this library should be, controlled by a
librarian. -

9.6 On-line/Interactive Change And Debug Facilities

J
Interactive debugging .provides significant' ntages over
the batch method because of the convenie speed of.
Modification. With interactive processing, the aiFrtiner
can analyze the problem area, make Changes to a test version
of the system, andtest and debug the system immediately.
The: alternative, to subMit, a batch j,c.b to perform the
testing, requires much 'more time to complete. While in some
-instances this may 'be 'necessary because of systeM size, or
resource requirements, most maintenance activities (including
perfective.. Maintenance). are. highly critical problems which
must be addressed and solved as quiCkly as, possible.
Interactiye 'procesSing provides a continuity which enables

(7---

'greater concentration on the problem and quicker response to
the tests. -Although the 'estimates of the increase in
productivity varywidely, it is clear that there is a

substantial impreNement when the 'maintainer "has on-line'
interattire-proaessing capabilities..

-.47 -

. 4 _ 4.

7'Genenatdon And Retention Of Test Data
'

Standardized ',procedures (often developed in-house) for
.

generating and retaining test data are recommended. One of
the Prennial problems in software maintenance is the lack'of
test data While in most instances, test data are generated

4 .

by, theimaintainer, studies have found that more errors and
, inconsistsnci4s sane uncovered when test data are prepared. by

the uipr, and .testing is more effective if samples of the
actual data are included in the test data.

. ob
Once 'a test data set has been generated and the system
successfully rusilagainst it, the data should be retained for
use in future maintenance regression testing.. Regression
testing le the -selective retesting of the,pystem to detect
any faults which may have.been introduced and to verify that
the maintenance modifications have preserved the
functionality of the system. The system testing verifies
that the system prodyces the same results.and continues to
meet .the requirements "specifications. In addition, the
results of the testing should be saved 'lin machine readable
form so that the results' of future maintenance testing can be
cojrpared with the previous test results through the use of a
comparator.

,
.

.

Although some test data set, generators are commercially
aVailable,.4moit are develo ed either as part of the original
development effor't of a lame system or 1S'' part of the
maintenance. effort. A test data generator is usually built
fora specific system and designed to test the system to a

selected, level' of detail. Guidance,. on testing its available
in several NBS /I.CST- publications [TIPS101], [NBB75], and
[NBS93].

ti

JP

48 -
5 7

'10.0 MANAGING SOFTWARE MAINTENANCE

The effective use of good management techniques and
methodologies in dealing with scheduling maintenances
negotiating with users, coordinating' the maintenance staff,
and instituting the use of the proper tools and disciplines
is 'essential to a successful software maintenance effort.
Software maintenance managers are responsible for making
decisions regarding the performance of software maintenance;
assigning priorities to the requested work; estimating the
level of effort for a task; tracking the progress of work;
and 'assuring adherence to system standards in all phases of
the maintenance effort. A software maintenance manager must
not only be a good technician, but also a good manager.
While this may seem to be an obvious point, it is, in actual
practice, far too often ignored.

There appears to- be a common failure to recognize .the
importance of the word "management" in the phrase"software
maintenance management". In many instances, technical
persons are promoted to positions of managemer)t within an
organization with the assumption that-technical expertise is
all that is required to manage effectively a software
maintenance operation. On the contrary, a software
maintenance function has the same organizational needs and
managerial problems as any other function.

The primary duties of a software maintenance manager include:

1. Evaluate, assign, prioritize, and schedule
maintenance work requests.

2. Assign personnel to scheduled tasks.
3. Track progress of all maintenance task and ensure

tkket they are on or ahead of schedule.
4. Adjust schedules when necessary.
5. Communicate progress and problems to the user.
6-. Communicate progress and problems to upper

management.
7. Establish and maintain maintenance standards and

guidelines.
8. Enforce standards apd make sure that the software

maintenance is of high quality.
9. Deal with problems and crises as they arise.
10. Keep the morale of the maintenance staff high.

This list is not complete, but is sufficient to illustrate
the point that if the words "software maintenance" were
deleted, it would simply be a list of management duties for
any other organizational function. Thus, it is imperative
that am software maintenance manager be qualified both
technically and managerFally to hold such a position. If,the
person' is not, the ability to be an effective maintenance

- 49 -

58

manager will be severely diminished.

Just as the importance of management skills has not been

recognized in the selection of many software maintenance
,managers, in other instances the need for technical

maintenance expertise has not been addressed. While many of

the required skills involve dealing with and coordinating
people, the software maintenance manager also has the

responsibility to control the technical aspects of the

process. Without a strong technical background and actual
experience in performing software maintenance, the, manager

may not be able to deal with the, conflicting needs and
requirements of many maintenance tasks.

The software maintenance manager should be aware of, and

familiar with, all of the work being performed by the

software maintenance staff. While this is not always

practical or possible in large organizations, each specific
application system must have a central authority who is

responsible for controlling and coordinating the maintenance
of that system. Too often, a form of anarchy exists in

software maintenance organizations. The maintainers are not
adequately coordinated and are permitted to address problems

as they arise without adhering to established standards and

procedures. In the short term this may be the most effective

manner of addressing immediate problems. The long term

consequences, however, are usually a decreased level of

maintainability for the system, and an increased need for
maintenance. This section discusses standards, guidelines,
procedures, and policies which will facilitate the management
of the software maintenance function and will improve the

capability to maintain application systems.

10.1 Goals Of Software Maintenance Management

The goal of software maintenance manageMent is to keep all

systems functioning and tQ respond to all user requests in a

timely and satisfactory manner. Unfortunately, given the

realities of staffing limitations, computer resource
limitations, and the unlimited needs and .desires of most

users, this goal is very difficult to achieve. The realistic
goal, then, is to keep ,,the software :maintenance process

orderly and under control. The specific responsibility of
the software maintenance manager is to keOp all application

systems running and to facilitate commtAnication be een the

three groups involved with software maintenance.
,I.

, .': sg

The user must be kept "satisfied that everything poSble is

being done to keep each system runninvas efficiently and
productively as possible._

- 50 -

Table 11 - Goals of Software Maintenance

1. Keep the maintenance proe'ess orderly and
under control.

2. Keep the application systehlg 'running.

3. Keep the users satisfied.

4. Keep the maintainers happy.'

5. Keep maintenance viewed as a positive aspect
of ADP - one which contributes to the meeting
of the goals of the organization; not some-
thing that has to be done because the ADP
staff just Can't do it right the first time.

Upper management must be kept informed of the overall success
of the software maintenance effort and how software
maintenance supports and enhances the organization's ability
to meet its objectives. In dealing with upper, management,
one of the primary responsibilities of the software
maintenance manager is to keep maintenance viewed in a
positive perspective. Software maintenance is an important
effort which supports and contributes to the ability of the
organization to meet its goals. Too , many of the problems
encountered in software ,maintenance are the result of the
negative attitude that it is a function which exists because
the software support staff can "never do it right". Rather,
the emphasis should be on the concept that software
maintenance enables an organization to impi-ove and expand its:
capabilities using existing systems.

Finally, the software maintenance manager has the
responsibility for keeping the maintenance staff happy and
satisfied. Software maintenance must be thought of ,as the
challenging, dynamic, interesting work it can be.

10.2 Establish a Software Maintenance Policy

A software maintenance policy should employ standards which
describe in broad terms the responsibilities, authorities,
functions, and operations of the software maintenance'
organization. It should be comprehensive enough to address

- 51 -

60

any type of change to the software system and its

environment, including changes to the hardware, software and
firmware. To be effective, the policy should be consistently
applied and must be supported and promulgated by upper

management to the extent that it establishes an

organizational commitment to software maintenance. When
supported by management, the standards and guidelines help to
direct attention toward the need for greater discipline in
software design, development, and maintenance.

The software maintenance policy must specifically address the

need and justification for changes, the responsibility for
making-the Ohanges,_the change controls and procedures, and

use of :modernTrogrpmming practices, techniques and tools.
It shoul4describeHO'Oagement's role and duties in regard to

software.; mainten4*ae ,:an4 define the process and procedures
for controlli44 oba'ngeS:,Acithe software after the baseline

has been :esta4ishedj4aseline refers to a ','Well-defined

base or conf-igUr4tion.:*.tbw4ck.,,p1,1 modifications are

applied.) Implementatioii Ois%',thel4olicy has theleffect of
enforcing adherence to ruleregarOing the operating software

and documentation from initiation through completion of the

requested change. Qpce this is accomplished, it is possible

to establish the (milestones necessary to measure software
maintenance progress. Plans, however, are of little use if

they are not followed. Reviews and audits are required to
ensure that the plans are carried out.

\The primary purpose of change control is to assure the

continued ,smooth functioning of the application system and
the orderly evolution of that system. The key to controlling
changes to a system is the centralization of change approval

and the formal requesting of changes. The software

maintenance surveys found that each successful organization
had a formal trouble report/change request process with a

single person or a change review board approving all
changes/enhancement requests prior to the scheduling of work.

When this is not done, the confusion which results from
independent maintenance efforts is usually disastrous.

Everything done to software affects its quality. Thus,

measures should be established to aid in determining which
category of changes are likely to degrade software quality.

Care must also be taken to ensure that changes are not
incompatible with the original system design and intent. The

degree to which a change is needed and its anticipated use
should be a major consideration. Consideration should also

be given the cost/benefit of the change: "would a new system

be less expensive and provide better capabilities?". The

po4icies esta.b, 'shing change control should be clear,

concise, well pub icized, and strictly enforced.

- 52 - Si

Table 12 - Establishini' .Software Maintenance Policy

1. Review and evaluate all requests for changes.
- The change must be, fully justified.
- The impact on other work and users should be

taken into consideraion.

2. Plan for and.schedule maintenance.
- Each change'reOest'should be assigned a priority.
- Work should, h6:.sCheduled according to priority.
- The scheduled-should be enforced and adhered to

3. Restrict eode-cha3ges to the approved/scheduled
,Work.

4..EnfOrced0cumentati,on and coding standards through
,reviews `and .a'udits.

10:2.4 Review and eval=uate all requestsfo'

111 Buser andstaff tequests for changes-, to an!'application
system (whether:.:enhancements, pr'eventfve ,maiPtenanc,e,
errors) shouldHbequested in writing and Submitte-d.
software maintenanclmanager. Each ".change'' request should
include not.onlY.the.deScription of ehe'reqUeSted-:c,ha4e,:but,
a; full ju6ti,tication..,:of why that -0-014geshould:.be'lalcie.2,,.
°T,hese- change requests should be carefully, 'Te0ew,ed and
'evaluated .Abefore.-'any.actual work is pen formed i$114.'OOtem::
The evaluation:shOUld:take into considerlationakonther,:,
things, the-:'StW _resources available veeSusthe:,:eetimte.d''
worklbad pfthe:.request; the estimated additiOhal.PPYt1,0g
resources. :wh4,ch .141ill.be required for trip designtestt:104V
and:operation:-of the,m0ified system; and the,timp:a.n4::.00.4-.:'
Of updating the documentation. Of course, some .flexiti).ty.:.
must be tUilt*into. the process with some
authority, to' initiate critical tasks. HoweNeF, each tOque.st
should' -be. reviewed and judged by either, the -:software
mainenance:Manager or a change review board.,,411Joing.'sowill;'
reduce the amount of 'unnecessary and/or unjvstified :s4ork
whicnis'.Often performed on a system.

- 53
62

10.2.2 Plan for, .and schedule maintenance

The result of the review of all change requests should-be the

assignment of a priority to each request and the updating of

a schedule for meeting those requests. In many ADP

organizations, there is simply more work requests than staff

resources to meet those requests. Therefore, all work should

be scheduled and every effort made to adhere to the schedule

ratherrather than constantly changing course in responset6 the

most visible crisis.

10.2.8 Restrict code changes to the approved work

In many cases, eSpecl:akly,_When the code was poorly designed

and/or written,:tliere'lSa strong temptation to change other

sections of the code as long as the program.has been "opened

up". The software maintenance manager must monitor the work

of the software maintenance staff, ,and ensure that only the

authorized work is -performed. In order to monitor

maintenance effectively, all activities must be documented.
includeS everything from. the change request form to the

fra'1 'revised source listing.

Permitting software'maintehance-staff to make changes other

than those authorized `scan' cause schedules to slip and may

prevent other, higher priority work from being completed on

time. It' is very difficult to limit the work which is.done

on a specific program, but it is imperative to the overall.,

success of the maintenance function to do so.

10.2.11 Enforce documentation and coding standards

Some programmers ;do not like to tOcument, some are not good

at. it, but priMarily, documentation suffers,becaUse of too

much"- pressure and too little -time in the schedule to do it.

Proper and complete oommunication of neceSsarY inforMation

between all persons who have, are currently, and who will

work on the system is essential. The most important media
for this communication is the documentation and the source

code'.

It is not enough to simply establish standards for coding and

documentation. Those standards must be continually enforced

via technical review and examination of all work performed by

the software maintenance staff. In scheduling maintenance,

sufficient time should be provided to fully update' the

documentation and to satisfy established standards and

guidelines before a new assignment is begun.

54 63

10.3 Staffing And Management Of. Maintenance Flersonnel

Selecting the. proper staff for a software maintenance project
is as important as the techniques and approaches employed.
There is some debate on whetkar. or not an organization should
have separate staffs for maintenance and devalo,pment.. Many
managers have indicated that separate staf=fs can-'improve the
effectiveness of both,. However, the'te0.ities ,of size,
organization, buUet, and staff ceilings often Preclude the
establishment of,,tseparate maintenano,6;"and developmerit'staffs.

ManageMent must apply the same criteria to the maintainers
that,-are .applied to software and systems designers or other
highly sought after professional positions. If an individual
is productive, .consistently patforms well, ;:bas a: good
attitude, and displays 'initiatiVait shouldnot matter
whether the project is deyalcOant or Maintenance. 'Recent
stUdie on the moti'vatiOn:, .of` program and analysts
[COUG8] indicate that- thareate":;thtae'major ptychological_
factors that can impact the 'attitUdaMbrale, and ,genera
peci,ormance of an individua.

- the work must be considered worthwhile by asat of::
values accepted by;:the.indiVidual, asmell at by the
standards employecLV.:the oYganizatiOn.

- the individual must feel: a responsibill.Wfor
her :performance. There it a need tojoWparsonally
';accOUntable for the,outcoMa-Of an effort;
the individual must be abla, ,to determine on .a regular

.tatis whether or not theOtCome of his or her efforts
is satisfactory.

When these factors are high, 'the individual is likely to have
a good attitude and be motivated.,

Some organizations have attempted to improve morale and the
image of maintenance by simply renaming the maintenance
function. This is a superficial approach. It does nothing
to change what is in fact being done, or the way it is
perceived by the maintainer and supported by management. A
more positive approach is to acknowledge the importance and
value of good maintenance to the organization through career
opportunities, recognition, and compensatir.-

.

Often a maintainer is responsible for large amounts of code,
much of which was developed and previouslY maintained -by
someone else. This code is -generally-old, unstructured, has
received numerous patches, and is inadeqUately documented.
The potential for errors,. delays, and unhappy users is
considerable. Praise, thanks and recognition,ara often as

- 55
64

important as salary and challenging assignMentS in keeping
good analysts and programmers.

It is essential that work.assignments offer growth potential.
continuing education is required at all levels to ensure that
not only the maintainers, but the users, managers, and

operators have a thorough understanding- of software
maintenance. Training should include: programming
languages, standards and guidelines, operating systems, and
utilities.

There is acommon'misperception that maintenance has to be

1:lull, tedious, non- creative work which offers little chance
for reward or advancementThis view can only).9 changed
ttrOligh management initiative's. The maintainerjS: a critical
pa!-tt'of. the process the., <ey to deliveryfthg*Hproduct
both Momised by ManageMent and de.p Vii4hY'.Ahe users.
Indeed,1(the.maintainer 1...8.;:b.he of the most ..:impOttaht members
of the. application software staff. The ,'iMpOrtance of

maintenancemust be acknowledged in terms of :both position
value and function.

Some points to keep in mind when managing a software
maintenance Sunction are outiined in Table 13.

- 56 - 65

TableY13 Managing the Software Mainte'dt0
Function f;

-,*

le Maintenance is as/important as development16'.....
just as difficultand chaflenging.'

. Maintainers should be highLy qualified, Pompet
:4,,

':

1
,ededicated profe8sionals. The staff should incl ,

,
,

both senior and junior personnel. Do
4 notshorI 4',..1'

change maintenance. Don't isolate the maintenance 4- .

staff. '''
4

3. Maintenance ;should'INT be used as a training
grpund where jqnior staff are left to
"sink -or- swim ". ' 't

. Staff membe'es should be rotated so they are
assigned tiN both maintenance and development. ,

It takes a ,good dev'eloper to be a good maintainer,
and, conversely, it takes a good maintainer to be
a good developer.

/fr

5. Good maintenance performance. and gaPd development
performanc'e should be equally newanded..

.6. There should be an emphasis on keeping the staff
well trained. This will keep performance at'an
optimdm level and help to minimize morale
problems.

7. Rotate assignments. ,Do not permit a .system or a
major part of a sy.steM to become someone's
private domain.

- 57

11.0 SUMMARY

Whfle the ICST survey identified sofpWare maintenance problems
Whi.ch'were' both managerial and technical in nature, management
is clearly the most important factor in improving the software

'maintenance process.. Most of the problems cited in the survey
were the result of inadequate management control and review of

software maintenance activities. Management mtmot take a closer
look at how the software is maintained, exercise bettero control
over the process, and ensure that effective software maintenance
techniques and tools are employed.

ReCommendatioms have been made in sections. 7.0 through, 10.0 of

this report to help a manager gain better control, and to help
the maintainer;, improve the quality of the maintenance performed.
In, ord'er to maintain control over the software maintenance
process ansi to ensure that the Maintainability of the system
does not 'd'eteriorate, it is important that software:maintenance
be anticipated and planned for.

The quality and maintainability of a :software system often

decrease 'as the system grows older. This is the result of many
factors which, taken one at a time, may not seem significant but
'become. cumulative and,.often: result; in a system which is very
difficult to maintain. 'Quality programming capabilities and

'techniques are readily available. .,powever, until a firm,

discipline is placed on how software maintenance is performed,
and that digcipline is,enforded, many'systems will be permitted
to deteriorate to the point where they are impossible to

maintain.

Software maintenance must be perfOrmed in a structured,
controlled manner. I,t is simply not enough to get a system "up
and running" after it breaks. Proper management control must be
exercised over the entire process. In addition to controlling
the budget, schedule, and staff, it is essential that the

Software maintenance manager control the syStem aft the changes
to it. The nOw.frequetly cited maxim that a System "must be

developed with maintenance in mind" is insufficient; a system
also must. be maintained with future maiptenance in mind. If

this is 'done, the quality and maintainability of the code
actually can improve. Otherwise, today's 'maintainable. systems'
aredestinedto become tomorrow's unmaintainable-systems.

- 58 -

[ARTH83] L.J.Arthur, Programming Productivity,
Sons, New York, 1983.

[BASI82] V.R.Basili and H.D.Mills, "Understanding and
Documenting Programs," IEEE Transactions gn 'Software
Engineering) Vol SE-8, No 3, MgY 1982, pp 270-283.

4.

John ,Wiley and

[SERS79] V.D.Henderson, and. -S:Q.Liegel, "Software'
Qbnfiguration Management: A Tutorial," Computer, January 1979,

[BpEj-178 B.l4J3oehm, J.R.Brown, H.Kasper, M.Lipow, G.J.MacLeod,
and, Characteristic:a, of Software Quality,, .

North H011and, Amsterdam-New 'Yorkford, 1978.

[BGEH81] ...)3.V.Boehm,,"An Experiment. in Small-Scale ApAication. .

.Software- .: : Engineering," IEEE Transactions gn Software
Engineering, Vol SE-7, No 5, September 1981, pp 482-493.

8.

[BOEH82] B.K.Boehm, Software Engineering
P-reftice-Hall, Englewood Cliffs, 1982.*

[BRIC83] L.Brice and J.Connell, "A Methodology for
Maintenance Costs," AFIPS 1983 National Computer
Proceedings AFIPS Press, Arlington, May
113-121.

Economics,
- .

Minimizing
Conference
1983, pp

[BRO075] F6P:Brooks, The Mythical. 'Man Month, Adddson:-MesieY)
Reading, Magsachusetts, 1975.

[BUCK77.] J-KBuckle, Managing Softwatk ProlectS, MacDonald and
Jane's, LondOn and American -ElSevielInc, New-Yo04. 1977,

.4. ,

o

[CENT82],JW.Center, "A Quality Assue4pce Prodrare4.tor Software
Maintenance," AFIPS 198a Natior;fal 'Computer -Confeince
Proceedings, AFIPS Press, Arlington, lirginia, May 1'9°82, pp
399-407. 0.

a,
[CHAP83] N.Chapin) "Software Maintepanca.tiNectivesi".AFIPS:p81..*.
National Computer C ere.9c, Proceeding.a, AFIPS PrOPi*
Arlington, Virginia, May

/ PP 779 -784,', ,

, .

[COOP79] J.D.Cooper and M.J.Fisher, editors, Software -QqaItt;Y
Management, Petrocelli Books Inc., 1979.

[couG82] D.J.Couger and M.A.Colter, "Effect of Task ,Assioirients,,-.
on Motivation of Programmers and Analysts," research' repoet, -1,
University of Colorado, 1982. ,

a

r

-e..

' i

.t.pfard, T.Love,
Compla.xity,of Software Maintenance

ani MoUaLe Metrics.,". LuE II-Asactionq
March 1979, Pp 96-103.

tr , and W.Atkins, MLiha&InZ _thg
New Ycrkl 1971'.

anoo ar,1 D.:,werinkl:er, "A Review 'of Software-..

: . r. .;y, " ; one A r Development Center,

r I, 7 .

and P.:_roeke, editors, EI-24.1ice in

LA of,.; t;orth-Holland, New York,

1! and Y.Marootty, "Improving Program

ation," cALCM, Vol ?5, No 8, August

1or :,oLumentation of Computer Programs and

kfliOrMatiQfl Fr_(AA'.L_!Q'Ing

i-cbr.L.ary

ior umentation of CoMputer Programs and

tem:, for the Initiation Phae,".Nfi Eederhi
().4, Augu.=A 1979.

..1e: u 1or D if ery(!lr_ Val idation, Verification, and

:',uf!-w;tr(.," .1,11T.QrmIisn
June 1983.

Johrp Wiley and

r,, 1 /".".

P.M.Dewl, editor:;,
1)%Y,

LIL6.ntAring,

H,Iter ompoter' ,oftware Technology Cra
",:r ' unt,r ul And .1',!dip'f Comptroller

r the F(.;M:;1) -80 -;8,

r

r if 1;11 id,' n Arid Maria y:rrif:n t,;.ince.

:r!;,r v(- Al I 1)(-v(1 uprro.'tit., " Ite per t the

ountlni; Fehruary ?O, 1981.

r tdi;, l r,t f.)f: Computer Jr ogr
r.ompt.rollrsr f,eneral Peport to ,

enruary ",q), 1981:

hfi

[GLAS79] R.L.Glass, Software Reliability
Prentice -Hall, Englewood Cliffs, New Jersey 1979.

Guidebook,

[GLAS81a] R.L.Glass and R.A.Noiseux, Software Maiatenancg
Guidekgok, Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[GLAS81b3 R.L.Glass, "Persistent Software Errors," IEEE
Iransaction_q. on Software Engineelng Vol SE-7, A 2, March

[GLAS82] R.L.Glass, Modern Programming Ple..acticei: A Report From
Industry, Prentice-Hall, .Englewood Cliffs, New Jersey, 1982.

[GREE81] J.F.Green, et al, "Dynamic Planning acid Software
Maintenance - 41 Fiscal Approach,".Naval Post Graduate School,,
Dept. of Commerce, NTIS, 1981.

[HALS77] M.H.Halstead, EleagnI_$ of Software Sctence, Elsevier
Science .,Publishing Company, New .YArk, 1977.

[HAML79] W.T.Hamlen, 'Application Prggram Maintenance Study -
Report to Guide," Procggdings.. of. Guide ka, May 1979, pp
1751-1758.

[HuRL82] R.B.Hurley, Decilon'Tatae_a ..Software ,Engineering,
Van Nostrand Reinhold, New York, 1982.

4
[JENS79] R.W.Jensen and C.C.Tonies,' Software
Prentice-Hall, Englewood Cliffs, Flew Jersey, 1.979.

.Eagineering,

[JONE78a] R.A.Jones, "Mintenance Considered Harmful,"
ForuM, CgCNt,,Vol 21, No 10, October 1978, p 822.

[LEHM77] M.M.Lehman; "Evolution Dynamics - A. Phenomenology of
Software Maintenance," ProcilniLq of .

Life Cycle
MAnAg.Qmn1 August 1977, pp 313 -323.

ACM

[LIFN78] E.B.Swanson, and G.E.Tompkins,
"Characteristics of Application Software Maintenance," CACM, Vol
21, No 6, June 1978, pp 466-471.

[LIEN79] B.P.Lientz and E.B.Swinson, "Software Maintenance - A
User /Management Tug -of- War;" data aarag.gllignt, . April. 1979, pp
26-30.

(LIEN80] B.P.Lient; and E.B.Swanson, agftN_arg aajjaeriarigg.,
t1,4n_z48_em_erit, Addi.sop:=Wesley, Noading, M3.egachusetts, 1980.

.

[L1EN81] B.P.Lientz and E.BrSWanson, "Problems in Application
:Software Maintenance," cAcm, Vol 24, No 11, N6vember 1981, pp
763 -769. (

- 61 -

[LON81] M.L.Ly4onsit"Salvaging Your Software Asset (Tools Based

Maintvancel", AirTPS 1981 National Computer Conference

roceedinfO, AFIPS Preps, Arlington, Virginia, May 1-981, pryi

337 /.342.
....

*40

[MARS83] 44,.Marsel-os,, "Human. Investment Tedhnique.s for

SoftEffective Sofare Maintenance," AFIPS 1883 National Computer
Conference ProCWOings, AFIPS Press, Arlington, Virginia, May

1983, 'pp 131 -136
. -c .

[MARSH83] R.E.MA'sh, "Application Maintenance: One Shop's

Experience aMd Organi2ation," AFIPS 1983 'National Computer

Conference Proceedings, AFIPS Press, Arlington, Virginia, May

1983.,vu 145-153% .

,

.-..!

[MART83] JiMartin, C.McClure, Software Maintenance - TdQ7 rrqbaem

End, Its Solutions, Prentice Hall, Englewood Cliffs, New jersey,..

1983.
.

'.*

.

b.
[MART82] 4.14'artin, Application Development Without Prsgrammers,

Prentice Hall, Englewood Cliffs, New Jersey, 1982.
4Fit

.

[MCcL81] C.L.McClure, Managing ;',SOftware . DgYelopment and

.
maintenance$ VaNiNostrand Reinhold, New York, 1981. .

.

[MILL79] E.Miller, 'Tutorial 9: Aut'oma'ted Tools for 'Software

.Engingeti".,' IEEE', Computer Society Press, Silverl-s$pring,

Maryland, 1979.) ,:, , 4
,

[MILL83,]1H.D.MMs,'Software..Produetkyity, Little Brown and Co,

1983.0
1.

' .
[MiiNS81] ,k.B.Muripson,4J"Software Maintainabili5: 1 Practj.cal

.Concern fol.- Life-Cycle. Costs," Computer, Vol 14, Nov 1981, pp

103-109. .;

..

f.,.1
...

[MYER76] .G.J.Mye rsi. Software' Reliallility: Priciples and
4,,

Practices, John Wiley and Sons, New York, 1976.
.

. .

V V
[MYtER79] -p.J.Myers,

or
IhNALI. of aciftwarg I t ng,,.John

I
Wiley and

Sons,,NewHrsrk, 1979. 40
t

,
v

.._

[NAVE79] '.Computer 'Software Life Cycle Management 'Guide," Naval

Electronics Systems Command, NAVELEXINST 5200.23,.Mar* 197"9.

[NBS75] W.R.Adrion, .M.A.Branstadu, and t.C.Chernliaysky,

"Validation, Verification and TeStinForComputli SittwAbeintpeS

EmDilg.alls2n 5_1(/:-2/5, February 1981. .

[NBS87], A.Jileumann, "Management Guide For Software

Documentation," NBS.apgcial putlicatIon 50=81, January 1982. 1.

0

- 62 -

40

S. 4'
.
.

-[NBS93] P.B.Powell, editor, "Software Validation, Verificatip
and Testing Technique and Tool Reference Guide," NBS Special
Publication 500-91, September 1982.

[NBS98] P.B.Powell, editor, "Planning For Software Validation,
Verification and 'Testing," NBS Special Publication .50Q=28,
November 1982.

[PARI83] G.Parikh, N.Zvegintzov, Tutorial orb, Software
Maintenance, IEEE Computer Society Press, .Silver Spring,
Maryland, 1983.

[PARI80] G.Parikh, editor, Techniques Program and System
Maintenance, Ethnotech, Lincoln, Nebraska, 1980.

[PEER81] D.E.Peercy, "A Software Maintainability .Evaluaation
Methodology," IEEE Transactions La Software Engineering, Vol
SE -7, No 4, July 1981, pp 343-351. ...

[PENN80] R.H.Pennington, "Software Development and Maintenance
Where Are WE?," Proceedings COtOSAC80, IEEE Computer Society's
Fourth International Computer Software and Application
COnfer_endg, 1980, pp 419-422.

[pERR81] W.E.Perry, Managing SYsIgm 'Maintenance, Q.E.
Information Sciences, Inc., Wellesley, Massachusetts, 1981.

[PRES82] R.Pressman, Software Engineering: 11-- Practioner's
Appro,ch, McGraw Hill, New York, 1982.

[RAYN83] R.J.Raynor and L.D.SpeCkmann, "Maintaining User
Participation Throughout the .Systems Development Cycle," AFIPS
1983 National Computer Conference Proceedings, AFIPS Press,
Arlington, Virginia, May 1983, pp 17 -180.

[REIF77] D.J.Reifer and S.Trattner "A ,Glossary of Software
,.7ols and' Techniques," Computer Vol 10, No 7, July 1977, PP
.:52,40.

.[RICH83] G.L.Richardson and C.W.Butler, . "OrgaAizational Issues
of 'Effective Maintenance ManSgement,"' AFIPS '1983 National
CompLitir, .Conference Proceedings, AFIPS Press, Arlington,
Virginia, May 1983, pp 155-161.

[-SCHN79] ,N.-F.Schneidewind,, H.M.Hoffman,. -"An Experiment In'

Software Error Data Collection And. Analysis," IEEE Transactions
oc Software Engine_gring, Vol SE -5, No 3, May 1979, pp 276-286.

[SCHN83] G.R.Schneider, "Structured Software Maintenance," AFIPS
1983 National Compute Conferenog Proceedings, AFIPS Press,
Arlington, Virgipia., May 1983, pp 13T-144.

63. -
72

[SHNE80] B.Shneiderman, Software Psychology, Winthrop
Publishers, 1980.

[SWAN76] E.B.Swanson, "The Dimensions of Software Maintenance",
IEEE Computer Society, Proceedings of the 2nd International
Conference On aoftwang Engineering., October 1976, pp 492-497.

[TAUT83] B.J.Taute, "Quality Assurance and Ma ntenance
Application Systems," AFIPS 1983 National Computer C r nc
Proceedings, AFIPS Pess, Arlington, Virginia, May 1983, pp
123-129.

[THAY81] R.H.Thayer, A.B.Pyster, andR.C.Wdod, "Major Issues in

Software Engineering Project Man Bement," IEEE Transactions gn
Software Engineering, Vol SE-7, N 4, July 1981, pp 333-342.

[TINN83] P.C.Tinnirello, "Improving Software Maintenance
Attitudes," AFIP 1983 National Computer Conference Proceedings,
AFIPS Press, Arlington, Virginia, May 1983, pp 107-112.

[WALK81] M.G.Walker, Managing .Software Reliability - The
Paracagifigtic Approacja, North Holland, New York, 1981

[WEIN72] G.M.Weinberg, The Psychokogy. of Computer Programming.,
Van Nostrand Reinhold, New York, 1972.

[YAU78] 'S.S.Yau, J.S.Collofello, and T.MacGregor,, "Ripple Effect
Analysis of Software Maintenance," IEEE Proceedings of COMPSAC
/a, 1978, pp 60-65.

[ZAK83] J.R.Zak, "When a Data Processing Department Inherits
Softyare," AFIV 1983 hgtiong1 Computer. Confereng..g. EISIggedings,
AFIPS Press, Arlington, Virginia,.May 1983, pp 163-172.

[ZELK78] M.V.Zelkowitz., "Perspectives on Software Engineering,"
Computing Surveys, Vol 10, No 2, June 1978, pp 197-216.

- [ZELL83] L.Zells, "Data Processing Project Management: A

Practical Approach for Publishing a Project Expectations
Document," AFIPS 1983 Natfcmal Computer Confergl.1kgAH Proceedings,
AFIPS Press, Arlington, Virginia, .May 1983, pp 81A48,%.,

[ZVEG83] N.Zvegintzov, "Nanotremds t)atamatioWAugust 1983, pp
106-116.

4,

- 64 - 73

APPENDIX .I

Software Maintenance-Definitions

"Software maintenance in its brbadest sense, includes error
corrections, changes(also called modifications or amendments),
enharlceffients, and. improvements to the existing software. It

includes maintenance of all sdTtware; including structured
(software developed using structured technologies) and
unstructured software (software developed,without...)."

Garish Parikh,"World of Software Maintenance"
Technigug.§ of Program and System Main..tenangt,
1981

Maintenance l% "the process of modifying existing operational
software-while leaving its primary functions intact."

Barry Boehm, "Software Maintenance",
IEEE Tran*aQtign1 Q Wtwarq Ingineering,
December, 1976.

"Ma,intenance i_sj, the continuing process of keeping the program
running, or improving its charateristics"

J.L. Odgen,'"Designing' Reliable Software,"
reprinted in [PARI81]

"Most generallyj'it is the.ptctesse6t..adaption, 1.4., updating
existing .systems functions tb. reflect new constraints or
additional features."

,

Chester Liu,,"A Look At Software Maintenance",
reprinted in tPAIiI8T1

'

"Traditionally, program maintenance has been'viewed-'as a second
class activity, with an -tadmixture of on-the-job training for
beginners and-of low=status assignments for the outcasts and the
fallen.

Richard,'Gunderman, "A Glimpse into Program
Maintenance ", reprinted in [PAffI81]

65-

"Maintenance is. the propesS:ofing)responsive to user needs -

fixing erors, making:tisei-7speaifded modifications, honing the
Program to be more'uSePul."

"Software maintenance....i's the act of taking a softwar4 product
that has aleeady been delivered to a customer and.,,is in use by
him, and keeping it functioning in a 'satisfactoryweaW '1

j

4'R.L.Glass and R.A.NoiSeux Software 4 *

Maintenang.g. Guislebcck,1981. , 4

tH

"Systems maintenance includes any activityReecied to ensurethat
,

application programs remain in satisfactory` .Working,ccondition,'"

(
W.E.Perry, Managing Systems .Mainterianse :1981.

. .

"...changes that have to 'be made to, computer_ prbgram after they.,
,

have been delivered ,to th.e customerHor-uSer.

James Martinand Carma McClure,SOfware
Maintenance .,,4The Prgblem,anq
1983.

"The maintenance of softwareincludes two ma
removal of defects and the' enhancement -of

Werner. S. FragiqCriticalqs8ue*
A Guide ta"Softwarcncmic.s,

1983.;

U.S. DEPT. OF COMM.

3IBLIOGRAPHIC DATA
HEET (See instructions)

1. PUBLICATION OR
REPQRT NO.

NBS SP 500-106

2. Performing CJ n. Report No

3, tionp ate
: _::" --.

eipier1.983 '6
'ITLE AND SUBTITLE Computer Science and echnology: -!'14,'

Qui dance on Software Maintenance 1

,UTHOR(S) .

Roger:J. Martin and Wilma M.0Sborne
'ERFORMING ORGANIZATION (If joint or other than NBS.

IATIONAL BUREAU OF STANDARDS
).EPARTMENT OF COMMERCE
liASHINGTOti, D'..C. 20234 .

see instructions) ',='''''L
1

. t-.,poptract/Grant No

-..''

II, . Type of Report & Pericil

-:Ffnai
PONSOR,ING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. St big

National -..Bureau of Standards ,..,. ii,

Department -of; COmmerce 'TA"

Washington, DC . 20234
:.. .

,

, ,
!'.',.. , P
fi..,U.,,

4...?

SUPPLEMENTARY NOTES

, -.TA hra.Ty of

,

),

, .

Congress . Catalog , Card Vilnlbet:' 837-600
.,.,..., '

,.,.

computer program; SF-I85. FINS Software Summary, is attached , 1'4' .4s"describes[; Docurhent des:eribes a

ABSTRACT (A,200 -word or less. fostugoammary of most signifiCant information. If docurpe , i . imes a significant
5iblio.,grophy, or literature survey.,,nierrti it here) Y:Aba;
This re ort aOrOsses1 and, problems of softwarelnalritefgance and `suggests
acti on' ;..apd ,Propedures w4ch can help. software mainte 440.1-,-.',.f. ganizati ons'.meet
the .9rokripg. depiaRccIs bt Mgantalning existing syStems.: ' - 1.347.t. eStabli shes
a!, vatks.-.j rig. d'eOni tion for software maintenance .and. , ...i., -... s ari' overview of
'!curr'ent'propleras and issues in that area Too. hniques that may be
used. to "improve the.' control ,of software.,maintenantio ti vi ties and the'
prodUC'tivity of a software maintenance organizati are discussed.. emphasis
',,i8 ' placed on the need fdr1 strA, effective ;team' 1. management-control of

.,:,the sOftwre maintenance .a in aethe ,,.. .r

st c) e ',4!.

.

l '

17

,..

vKEY WORDS (Si,,r ,to twelventries,Polphobeticol
a,daptive MainteAdrtce.;corrective

: sb,ftWare.,4tflgin*ering-;
.oftw'air*rria ince

Kvi;ii_,,;,Epi:Icr(,.
' . .,, ;

r)(3 Unlimited I,

[-j For Official IDitriiiiibn.
fxj:dcd: ''Ficien Superitritendent)of

',.. s' ,:10

er From NaticireFechnical

,,1
+t order; 'caPitolize lv, elf".,..1.,-.11, and`5inproip Pv word.- h --nienIons)

maintenance; managemen perfective. maintenance;
'software maintenance; software mai tenante management;

a ricei tool s .
,,-

...i.b4

'.1, -
Ilk

.
Do Not Release to NTIS

Documents, U.S. Government Printing Office, Washington; D.C. :

,
Information Service (NTIS), Springfield VA. 2216.1_

.

14. NO. OF
PRINTED PAGES

74

15. Price

.
USCOMMOC 0' 043- 00

ANNOUNCEMENT OF NEW PUBLICATIONS ON. r
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Docurrients,
Government Printing Office,
Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the
series: National Bureau of Standard); Special Publication' 500-.

Name

Company

Addrks

City State Zip Code

(Notification key N-503)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCHThe Journal of Research of the
National Bureau of Standards reports NIII`research and develop-
ment in those disciplines of the physical and engineering sciences in
which the Bureau is active. These include physics, chemistry,
engineering, mathematics, and computer sciences. Papers covet a
broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization.
Also includad from time to time are survey articles on topics
closely related to the Bureaus technical and scientific programs.
As a speciajvservice to subscribers each issue contains complete
citations to all recent Bureau publications in both NBS and non -
NBS media Issued six times a year. Annual subscription: domestic
SI 8. 'foreign S22.50 Single copy. 55.50 domestic; $6.90 foreign.

NONPERIODICALS

MonographsMajor contributions to the technical literature on
various subjects related to the Bureauls.scientific and technical ac-
tisities.

Handbooks Recommended codes of engineering and industrial
practice (including safety codes) developed in cooperation with in-
terested industries, prOfessional organizations, and regulatory.
bodies.

Special PublicationsInclude proceedings of conferences spon-
Sored by .NS. N BS annual reports, and other special publications
Appropriate to this grouping such as wall charts, pocket cards. and '
bibliographies.

Applied Mathematics SeriesMathematical tables, manuals, and..
studies of special interest to physicists, engineers, chemists,
biologists, mathematicians. computer programmers, and others.
engaged in scientific 'and technical work.
Natinnal Standard Reference Data SeriesProvides quantitative
data+ on the physical and chemical properties of materials, corn-

',from the world's literature and critically evaluated.
Desch)* undei- a worldwide program coordinated by N BS under
the authority of the National Standard Data Act (Public Law
90 -3 V6)

NOTE: The principal publication outlet for the foregoing data is
the Journal of Physical and Chemical Reference Darsa (.1PCRD)
published quarterly. for NBS by the American Chefnical Society
(ACS) and the American Institute of Physics (AIP). Subscriptions.
reprints. and supplements available from ACS, 1 155 Sixteenth St.,
NW, Washington. DC 20056.

Building Science SeriesDisseminates technical information
developed at the Bureau on building materials, components,.
systems, and whole structures. The series presents research results,
test methods, and performance criteria related to the structural and

. environmental functions and the durability and safety charac-
teristics of building elements and systems.

Technical Notes Studies or reports which are complete in them-
selves but restrictive in their treatment of a subject. Analogous to
monographs but not sit comprehensive in scope or definitive in
treatment of the subject arei. Often serve as a vehicle for final
reports of work performed at NBS under the sponsorship of other
government agencies.

Voluntary Product Standards Developed under procedures
published Wale Department of Commerce in Part 10, Title IS, of
the Code .of Federal Regulations. The standards establish
-nationally recognized requirements for'produCts. and provide all
concerned interests with a basis for common understanding of the
characteristics of the product.s.',N BS administers this program as a
supplement to the actisities of the private sector standardizing
organizations.

Consumer Information SeriesPractical information, based on
NBS research and experience. covering areas of interest to the con-
sumer. Easily understandable language and illustrations provide
'useful background knowledge for shopping in today's 'tech7
nological marketplace.
Order the above VBS puhlicutioni, iron, Superintendent of Docu-
ments. Government Printing Office. Washington, DC 20402,
Order the following NBS publicationsFIPS and NBSIR,:---from
the National Technical Information Service, Springfield.:V44216I.

Federal Information Procesiing Standards Publications (FIPS
PUB) Publications M this series collecffely constitute the
Federal Information Processing Standards Register. The Register
serves as the official source of information in the Federal Govern-
ment regarding standards issued by NBS pursuant to the Federal
Property and Administrative Services Act of 1949 as amended,
Public Law -89-306 (79 Stat. 1127); and as implemented by Ex-
ecutive Order 11717 (38 FR 12315, dated May II, 1973) and Part 6
of Title- IS CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)A special series of interiinsor
final reports on work performed by NBS for outside sponsors
(both gosernment and non-government). In general, initial dis-
tribution is handled by the sponscir: public distribution is by the
N'ational ,Technical Information Service , Springfield. VA 22161,
in paper cops or microfiche.forrii.

78P

